000 | 03324nlm1a2200481 4500 | ||
---|---|---|---|
001 | 644241 | ||
005 | 20231030040613.0 | ||
035 | _a(RuTPU)RU\TPU\network\9306 | ||
090 | _a644241 | ||
100 | _a20151106a2015 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSpark Plasma Sintering of Commercial Zirconium Carbide Powders: Densification Behavior and Mechanical Properties _fXialu Wei [et al.] |
|
203 |
_aText _celectronic |
||
225 | 1 | _aManufacturing Processes and Systems | |
300 | _aTitle screen | ||
320 | _a[References: p. 6058-6061 (52 tit.)] | ||
330 | _aCommercial zirconium carbide (ZrC) powder is consolidated by Spark Plasma Sintering (SPS). Processing temperatures range from 1650 to 2100 °C. Specimens with various density levels are obtained when performing single-die SPS at different temperatures. Besides the single-die tooling setup, a double-die tooling setup is employed to largely increase the actual applied pressure to achieve higher densification in a shorter processing time. In order to describe the densification mechanism of ZrC powder under SPS conditions, a power-law creep constitutive equation is utilized, whose coefficients are determined by the inverse regression of the obtained experimental data. The densification of the selected ZrC powder is shown to be likely associated with grain boundary sliding and dislocation glide controlled creep. Transverse rupture strength and microhardness of sintered specimens are measured to be up to 380 MPa and 24 GPa, respectively. Mechanical properties are correlated with specimens’ average grain size and relative density to elucidate the co-factor dependencies. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tMaterials | ||
463 |
_tVol. 8 _v[P. 6043-6061] _d2015 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aкарбид циркония (ZrC) | |
610 | 1 | _aискровое плазменное спекание | |
610 | 1 | _aстепенные законы | |
610 | 1 | _aползучесть | |
610 | 1 | _aпрочность | |
610 | 1 | _aразрыв | |
610 | 1 | _aмикротвердость | |
701 | 0 | _aXialu Wei | |
701 | 1 |
_aBack _bC. _gChristina |
|
701 | 1 |
_aIzhvanov _bO. _gOleg |
|
701 | 1 |
_aGrigorjev _bE. G. _gEvgeny Grigorjevich |
|
701 | 1 |
_aKhasanov _bO. L. _cRussian physicist, materials scientist, Doctor of Engineering _cprofessor, Director of TPU Nano-Centre and Head of the Department "Nanomaterials and Nanotechnologies" of TPU _f1958- _gOleg Leonidovich _2stltpush _3(RuTPU)RU\TPU\pers\27102 |
|
701 | 1 |
_aHaines _bCh. D. _gChristopher |
|
701 | 1 |
_aOlevsky _bE. A. _gEvgeny Aleksandrovich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнститут неразрушающего контроля (ИНК) _bКафедра физических методов и приборов контроля качества (ФМПК) _h68 _2stltpush _3(RuTPU)RU\TPU\col\18709 |
801 | 2 |
_aRU _b63413507 _c20151106 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.3390/ma8095289 | |
942 | _cCF |