000 03108nlm1a2200373 4500
001 644962
005 20231030040636.0
035 _a(RuTPU)RU\TPU\network\10046
035 _aRU\TPU\network\175
090 _a644962
100 _a20151207d2015 k y0engy50 ba
101 0 _aeng
102 _aGB
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aA new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems
_fCh. Jin [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aIn many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tEnterprise Information Systems
463 _t25 Aug 2015
_v[15 p.]
_d2015
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aJin
_bCh.
_gChenxia
701 1 _aLi
_bF.
_gFachao
701 1 _aTsang
_bE. C. C.
_gEric
701 1 _aBulysheva
_bL.
_gLarissa
701 1 _aKataev
_bM. Yu.
_cspecialist in the field of informatics and computer engineering
_cProfessor of Yurga technological Institute of Tomsk Polytechnic University, doctor of technical sciences
_f1961-
_gMikhail Yurievich
_2stltpush
_3(RuTPU)RU\TPU\pers\34686
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bЮргинский технологический институт (филиал) (ЮТИ)
_bКафедра информационных систем (ИС)
_h1492
_2stltpush
_3(RuTPU)RU\TPU\col\18893
801 2 _aRU
_b63413507
_c20151207
_gRCR
856 4 _uhttp://dx.doi.org/10.1080/17517575.2015.1080302
942 _cCF