000 | 03108nlm1a2200373 4500 | ||
---|---|---|---|
001 | 644962 | ||
005 | 20231030040636.0 | ||
035 | _a(RuTPU)RU\TPU\network\10046 | ||
035 | _aRU\TPU\network\175 | ||
090 | _a644962 | ||
100 | _a20151207d2015 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGB | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aA new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems _fCh. Jin [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aIn many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tEnterprise Information Systems | ||
463 |
_t25 Aug 2015 _v[15 p.] _d2015 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
701 | 1 |
_aJin _bCh. _gChenxia |
|
701 | 1 |
_aLi _bF. _gFachao |
|
701 | 1 |
_aTsang _bE. C. C. _gEric |
|
701 | 1 |
_aBulysheva _bL. _gLarissa |
|
701 | 1 |
_aKataev _bM. Yu. _cspecialist in the field of informatics and computer engineering _cProfessor of Yurga technological Institute of Tomsk Polytechnic University, doctor of technical sciences _f1961- _gMikhail Yurievich _2stltpush _3(RuTPU)RU\TPU\pers\34686 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЮргинский технологический институт (филиал) (ЮТИ) _bКафедра информационных систем (ИС) _h1492 _2stltpush _3(RuTPU)RU\TPU\col\18893 |
801 | 2 |
_aRU _b63413507 _c20151207 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1080/17517575.2015.1080302 | |
942 | _cCF |