000 04247nla2a2200481 4500
001 645349
005 20231030040649.0
035 _a(RuTPU)RU\TPU\network\10433
035 _aRU\TPU\network\10424
090 _a645349
100 _a20151216a2015 k y0engy50 ba
101 0 _aeng
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe Choice of Conditions for the Determination of Vanadium, Chromium and Arsenic Concentration in Waters by ICP-MS Using Collision Mode
_fI. S. Mazurova, A. A. Khvaschevskaya, N. V. Guseva
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: р. 204-205 (11 tit.)]
330 _aInductively coupled plasma mass spectrometry (ICP-MS) is a popular method for the analysis of waters with various matrices and salinity. One of the difficulties of routine measurements by ICP-MS is spectral interferences conditioned by polyatomic ion formation in the plasma. The detection of the background concentration of such elements as vanadium, chromium and arsenic in natural waters by ICP-MS is complicated because of the polyatomic interferences, having the same mass-to-charge ratio. Thus, the purpose of this article is to determine the optimal rate of helium flow for the effective correction of polyatomic interferences of vanadium, chromium and arsenic and the reduction of their detection limits in Cl-rich waters. This research has been carried out using an inductively coupled plasma mass spectrometer NexION 300D with a universal cell technology (UCT) (PerkinElmer, USA) and three model solutions. For the detection of vanadium, chromium and arsenic content in chloride matrix water by ICP-MS, a collision mode is preferable for polyatomic interference correction. The optimal helium flow rate for this purpose is 2.5 ml/min. Under these conditions, the detection limit of vanadium, chromium and arsenic decreases by order of two.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 0 _0(RuTPU)RU\TPU\network\3889
_tProcedia Chemistry
463 0 _0(RuTPU)RU\TPU\network\10324
_tVol. 15 : Chemistry and Chemical Engineering in XXI century (CCE 2015)
_oXVI International Scientific Conference dedicated to Professor L.P. Kulyov, 25-29 May 2015, Tomsk, Russia
_fNational Research Tomsk Polytechnic University (TPU) ; ed. E. I. Korotkova
_v[P. 201-205]
_d2015
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aплазма
610 1 _aспектрометрия
610 1 _aстолкновения
610 1 _aванадий
610 1 _aхром
610 1 _aмышьяк
610 1 _aаналитические сигналы
610 1 _aконцентрация
610 1 _aводы
700 1 _aMazurova
_bI. S.
_chydrogeologist
_cengineer of Tomsk Polytechnic University
_f1991-
_gIrina Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\33867
701 1 _aKhvaschevskaya
_bA. A.
_chydrogeologist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of geological and mineralogical sciences
_f1969-
_gAlbina Anatolievna
_2stltpush
_3(RuTPU)RU\TPU\pers\30953
701 1 _aGuseva
_bN. V.
_chydrogeologist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of geological and mineralogical sciences
_f1984-
_gNatalia Vladimirovna
_2stltpush
_3(RuTPU)RU\TPU\pers\32200
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут природных ресурсов (ИПР)
_bКафедра гидрогеологии, инженерной геологии и гидрогеоэкологии (ГИГЭ)
_bНаучно-образовательный центр "Вода" (НОЦ "ВОДА")
_bПроблемная научно-исследовательская лаборатория гидрогеохимии (ПНИЛ ГГХ)
_h260
_2stltpush
_3(RuTPU)RU\TPU\col\19129
801 2 _aRU
_b63413507
_c20161121
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.proche.2015.10.032
856 4 _uhttp://earchive.tpu.ru/handle/11683/15052
942 _cCF