000 02587nlm1a2200337 4500
001 648015
005 20231030040822.0
035 _a(RuTPU)RU\TPU\network\13172
035 _aRU\TPU\network\12307
090 _a648015
100 _a20160505a2015 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aNumerical study of turbulent natural convection in a cube having finite thickness heat-conducting walls
_fM. A. Sheremet, I. V. Miroshnichenko
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 1569 (41 tit.)]
330 _aThree-dimensional transient natural convection in a cubic enclosure having finite thickness solid walls subject to opposing and horizontal temperature gradient has been investigated by a finite volume method. The turbulent flow considered into the volume is described mathematically by the 3D Reynolds averaged Navier-Stokes equations using the standard k-ε model with wall functions, including the energy equation. The velocity and temperature distributions were calculated at fixed Prandtl number, Pr = 0.7 and different values of the Rayleigh number, thermal conductivity ratio and dimensionless time. Three-dimensional velocity and temperature fields, temperature profiles at middle cross-sections and average Nusselt numbers have been presented. It has been found that an insertion of the third coordinate for the conjugate problem leads to a decrease in the average Nusselt number by 5.8 % in conditions of a stationary heat transfer mode.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tHeat and Mass Transfer
463 _tVol. 51, iss. 11
_v[P. 1559-1569]
_d2015
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
700 1 _aSheremet
_bM. A.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1983-
_gMikhail Aleksandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35115
701 1 _aMiroshnichenko
_bI. V.
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bЭнергетический институт (ЭНИН)
_bКафедра атомных и тепловых электростанций (АТЭС)
_h118
_2stltpush
_3(RuTPU)RU\TPU\col\18683
801 2 _aRU
_b63413507
_c20160505
_gRCR
856 4 _uhttp://dx.doi.org/10.1007/s00231-015-1520-8
942 _cCF