000 03908nlm0a2200469 4500
001 648847
005 20231030040851.0
035 _a(RuTPU)RU\TPU\network\14006
090 _a648847
100 _a20160608a2016 k y0engy50 ba
101 0 _aeng
102 _aNL
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aChaotic dynamics of flexible beams driven by external white noise
_fJ. Awrejcewicz [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 46 tit.]
330 _aMathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear).
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMechanical Systems and Signal Processing
_d1987-
463 _tVol. 79 : Special Issue from ICEDyn 2015
_feds. Nuno Maia, Miguel de Matos Neves
_v[P. 225-253]
_d2016
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aпараметрические колебания
610 1 _aбалки
610 1 _aФурье-анализ
610 1 _aвейвлет-анализ
701 1 _aAwrejcewicz
_bJ.
701 1 _aKrysko
_bA. V.
_cspecialist in the field of Informatics and computer engineering
_cprogrammer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences
_f1967-
_gAnton Vadimovich
_2stltpush
_3(RuTPU)RU\TPU\pers\36883
701 1 _aPapkova
_bI. V.
701 1 _aZakharov
_bV. M.
701 1 _aErofeev
_bN. P.
701 1 _aKrylova
_bE. Yu.
701 1 _aMrozowski
_bJ.
701 1 _aKrysko
_bV. A.
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут кибернетики (ИК)
_bКафедра инженерной графики и промышленного дизайна (ИГПД)
_bНаучно-учебная лаборатория 3D моделирования (НУЛ 3DМ)
_h6704
_2stltpush
_3(RuTPU)RU\TPU\col\20373
801 2 _aRU
_b63413507
_c20170515
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.ymssp.2016.02.043
942 _cCF