000 | 03627nla2a2200469 4500 | ||
---|---|---|---|
001 | 649917 | ||
005 | 20231030040928.0 | ||
035 | _a(RuTPU)RU\TPU\network\15087 | ||
035 | _aRU\TPU\network\15085 | ||
090 | _a649917 | ||
100 | _a20160831a2016 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrgn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aEffect of Metal Additives on the Combustion Characteristics of High-Energy Materials _fA. G. Korotkikh, O. Glotov, I. Sorokin |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 9 tit.] | ||
330 | _aThermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB[2], Al\Mg alloy, Fe, Ti and Zr) in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber. | ||
461 | 0 |
_0(RuTPU)RU\TPU\network\4526 _tMATEC Web of Conferences |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\14977 _tVol. 72 : Heat and Mass Transfer in the System of Thermal Modes of Energy – Technical and Technological Equipment (HMTTSC-2016) _oApril 19-21, 2016, Tomsk, Russia _o[proceedings] _fNational Research Tomsk Polytechnic University (TPU) ; eds. G. V. Kuznetsov [et al.] _v[01048, 6 p.] _d2016 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aдобавки | |
610 | 1 | _aметаллы | |
610 | 1 | _aсжигание | |
610 | 1 | _aвысокоэнергетические материалы | |
610 | 1 | _aгорение | |
610 | 1 | _aпорошки | |
610 | 1 | _aтвердые топлива | |
610 | 1 | _aалюминиевые порошки | |
610 | 1 | _aдисперсность | |
700 | 1 |
_aKorotkikh _bA. G. _cspecialist in the field of power engineering _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1976- _gAleksandr Gennadievich _2stltpush _3(RuTPU)RU\TPU\pers\34763 |
|
701 | 1 |
_aGlotov _bO. _gOleg |
|
701 | 1 |
_aSorokin _bI. _gIvan |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЭнергетический институт (ЭНИН) _bКафедра атомных и тепловых электростанций (АТЭС) _h118 _2stltpush _3(RuTPU)RU\TPU\col\18683 |
801 | 2 |
_aRU _b63413507 _c20170120 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1051/matecconf/20167201048 | |
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/33445 | |
942 | _cCF |