000 03600nlm1a2200409 4500
001 650032
005 20231030040932.0
035 _a(RuTPU)RU\TPU\network\15214
035 _aRU\TPU\network\11415
090 _a650032
100 _a20160905a2016 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrgn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aApplying the heat conduction-based 3D normalization and thermal tomography to pulsed infrared thermography for defect characterization in composite materials
_fS. S. Pawar, V. P. Vavilov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 65 (23 tit.)]
330 _aActive infrared (IR) thermography is a non-contact, fast and wide-area nondestructive testing (NDT) technique that has been increasingly used in aerospace applications to detect both manufacturing and in-service environment-induced defects. The classical pulsed IR thermographic testing suffers from the problem of false indications due to surface clutter conditioned by uneven optical properties across a test sample surface. To some extent, this problem can be relaxed by using a technique called 'normalization'. A simple normalization algorithm, conventionally called 1D, involves the division of all images in a sequence by a chosen single image, often captured immediately after a flash. The novel technique of 3D normalization is implemented in this study to overcome the problems arising due to non-uniform heating and lateral heat diffusion in the case of pulsed IR thermographic NDT. In this case, normalization is carried out by dividing an experimental IR image sequence by the synthetic sequence which is calculated by solving the corresponding 3D problem of heat conduction. As a result of 3D normalization, the artefacts appearing due to uneven heating and absorption can be subdued through data normalization (division). Furthermore, fully automatic defect detection becomes possible as defining a reference point for sound area is not required as opposed to thermal contrast methods. In this work, the effectiveness of proposed 3D normalization approach is demonstrated for different heating conditions applied to glass and carbon fiber reinforced composites.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tInternational Journal of Heat and Mass Transfer
463 _tVol. 94
_v[P. 56-65]
_d2016
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aнеразрушающий контроль
610 1 _aкомпозиты
610 1 _aтеплопроводность
610 1 _aтомография
610 1 _aмоделирование
700 1 _aPawar
_bS. S.
_gSachin Sampatrao
701 1 _aVavilov
_bV. P.
_cSpecialist in the field of dosimetry and methodology of nondestructive testing (NDT)
_cDoctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU)
_f1949-
_gVladimir Platonovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32161
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут неразрушающего контроля (ИНК)
_bЛаборатория № 34 (Тепловых методов контроля)
_h6591
_2stltpush
_3(RuTPU)RU\TPU\col\19616
801 2 _aRU
_b63413507
_c20161026
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.018
942 _cCF