000 03482nlm1a2200385 4500
001 650326
005 20231030040941.0
035 _a(RuTPU)RU\TPU\network\15544
035 _aRU\TPU\network\14622
090 _a650326
100 _a20161003a2016 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPhotodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles
_fYu. I. Svenskaya [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 178-179 (62 tit.)]
330 _aThe elaboration of biocompatible and biodegradable carriers for photosensitizer targeted delivery is one of the most promising approaches in a modern photodynamic therapy (PDT). This approach is aimed at reducing sides effects connected with incidental toxicity in healthy tissue whilst also enhancing drug accumulation in the tumour area. In the present work, Photosens-loaded calcium carbonate (CaCO3) submicron particles in vaterite modification are proposed as a novel platform for anticancer PDT. Fast penetration of the carriers (0.9 ± 0.2 μm in diameter) containing 0.12% (w/w) of the photosensitizer into NIH3T3/EGFP cells is demonstrated. The captured particles provide the dye localization inside the cell increasing its local concentration, compared with “free” Photosens solution which is uniformly distributed throughout the cell. The effect of photosensitizer encapsulation into vaterite submicron particles on cell viability under laser irradiation (670 nm, 19 mW/cm2, 10 min) is discussed in the work. As determined by a viability assay, the encapsulation renders Photosens more phototoxic. By this means, CaCO3 carriers allow improvement of the photosensitizer effectiveness supposing, therefore, the reduction of therapeutic dose. Summation of these effects with the simplicity, upscalability and cheapness of fabrication, biocompatibility and high payload ability of the vaterite particles hold out the prospect of a novel PDT platform.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tColloids and Surfaces B: Biointerfaces
_oScientific Journal
463 _tVol. 146
_v[P. 171–179]
_d2016
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aSvenskaya
_bYu. I.
701 1 _aPavlov
_bA. M.
701 1 _aGorin
_bD. A.
_cchemist
_cLeading researcher of Tomsk Polytechnic University
_f1975-
_gDmitry Aleksandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\37352
701 1 _aGould
_bD. J.
701 1 _aParakhonskiy
_bB. V.
701 1 _aSukhorukov
_bG. B.
_cchemist
_cThe Head of the Laboratory of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1969-
_gGleb Borisovich
_2stltpush
_3(RuTPU)RU\TPU\pers\37353
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bУправление проректора по научной работе и инновациям (НРиИ)
_bЦентр RASA в Томске (Центр RASA)
_bЛаборатория новых лекарственных форм (Лаб. НЛФ)
_h7607
_2stltpush
_3(RuTPU)RU\TPU\col\21677
801 2 _aRU
_b63413507
_c20161003
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.colsurfb.2016.05.090
942 _cCF