000 | 04181nlm1a2200469 4500 | ||
---|---|---|---|
001 | 650554 | ||
005 | 20231030040954.0 | ||
035 | _a(RuTPU)RU\TPU\network\15772 | ||
035 | _aRU\TPU\network\15769 | ||
090 | _a650554 | ||
100 | _a20161010a2016 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aHigh-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels _fS. N. Gorodzha [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aEnrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10−5 mm3. Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 |
_tJournal of Biomedical Materials Research - Part A _oScientific Journal _d[s. a.] |
||
463 |
_tVol. 104, iss. 5 _v[P. 1194–1201] _d2016 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
701 | 1 |
_aGorodzha _bS. N. _cphysicist _cresearch engineer of Tomsk Polytechnic University _f1989- _gSvetlana Nikolaevna _2stltpush _3(RuTPU)RU\TPU\pers\36022 |
|
701 | 1 |
_aDouglas _bT. E. L. _gTimothy |
|
701 | 1 |
_aSamal _bS. K. _gSangram |
|
701 | 1 |
_aDetsch _bR. _gRainer |
|
701 | 1 |
_aCholewa-Kowalska _bK. _gKatarzyna |
|
701 | 1 |
_aBraeckmans _bK. _gKevin |
|
701 | 1 |
_aBoccaccini _bA. R. _gAldo |
|
701 | 1 |
_aSkirtach _bA. G. _gAndre |
|
701 | 1 |
_aWeinhardt _bV. _gVenera |
|
701 | 1 |
_aBaumbach _bT. _gTilo |
|
701 | 1 |
_aSurmenev _bR. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences _f1982- _gRoman Anatolievich _2stltpush _3(RuTPU)RU\TPU\pers\31885 |
|
701 | 1 |
_aSurmeneva (Ryabtseva) _bM. A. _cspecialist in the field of material science _cengineer-researcher of Tomsk Polytechnic University, Associate Scientist _f1984- _gMaria Alexandrovna _2stltpush _3(RuTPU)RU\TPU\pers\31894 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bФизико-технический институт (ФТИ) _bКафедра экспериментальной физики (ЭФ) _h7596 _2stltpush _3(RuTPU)RU\TPU\col\21255 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bФизико-технический институт (ФТИ) _bКафедра теоретической и экспериментальной физики (ТиЭФ) _bЦентр технологий (ЦТ) _h408 _2stltpush _3(RuTPU)RU\TPU\col\20620 |
801 | 2 |
_aRU _b63413507 _c20161215 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1002/jbm.a.35642 | |
942 | _cCF |