000 | 02827nlm1a2200361 4500 | ||
---|---|---|---|
001 | 651784 | ||
005 | 20231030041101.0 | ||
035 | _a(RuTPU)RU\TPU\network\17046 | ||
090 | _a651784 | ||
100 | _a20161122a2016 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrgn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aDiscretization of Natanzon potentials _fA. Ishkhanyan, V. Kraynov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 49 tit.] | ||
330 | _aWe show that the Natanzon family of potentials is necessarily dropped into a restricted set of distinct potentials involving a fewer number of independent parameters if the potential term in the Schrцdinger equation is proportional to an energy-independent parameter and if the potential shape is independent of both energy and that parameter. In the hypergeometric case only six such potentials exist, all five-parametric. Among these, only two (Eckart, Pцschl-Teller) are independent in the sense that each cannot be derived from the other by specifications of the involved parameters. Discussing the solvability of the Schrцdinger equation in terms of the single-confluent Heun functions, we show that in this case there exist in total fifteen seven-parametric potentials, of which independent are nine. Six of the independent potentials present different generalizations of the hypergeometric or confluent hypergeometric ones, while three others do not possess hypergeometric sub-potentials. The result for the double- and bi-confluent Heun equations produces the three independent double- and five independent bi-confluent six-parametric Lamieux-Bose potentials, and the general five-parametric quartic oscillator potential for the tri-confluent Heun equation. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tThe European Physical Journal Plus | ||
463 |
_tVol. 131 _v[342, 11 p.] _d2016 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aдискретизация | |
610 | 1 | _aпотенциалы | |
700 | 1 |
_aIshkhanyan _bA. _cphysicist _cAssociate Scientist of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1960- _gArtur _2stltpush _3(RuTPU)RU\TPU\pers\36243 |
|
701 | 1 |
_aKraynov _bV. _gVladimir |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bФизико-технический институт (ФТИ) _bКафедра общей физики (ОФ) _h136 _2stltpush _3(RuTPU)RU\TPU\col\18734 |
801 | 2 |
_aRU _b63413507 _c20161122 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1140/epjp/i2016-16342-9 | |
942 | _cCF |