000 03687nlm0a2200481 4500
001 652361
005 20231030041136.0
035 _a(RuTPU)RU\TPU\network\17645
035 _aRU\TPU\network\16028
090 _a652361
100 _a20161220d2016 k y0engy50 ba
101 0 _aeng
102 _aFX
105 _ay z 101zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aComputer system for electric drives fault diagnosis of mining shovels
_fV. G. Kashirskikh, A. N. Gargaev, V. M. Zavyalov, I. Y. Semykina
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 33 tit.]
330 _aIt is proposed to conduct fault diagnostic test on electric drives of mining shovels based on the results of monitoring the current values of electromagnetic and mechanical parameters and variables of electric drives obtained in the course of their operation using the modern computer technology. The structure of the developed system of functional diagnostics, allowing to monitor the status of the drive and identify emerging fault is shown in the paper. To determine in real time the current parameters and variables of DC motor which can't be measured during their operation, the dynamic identification was used based on the measured current and voltage of the motor windings, and mathematical estimation methods. Parameters of the mechanical subsystem of electric drive are identified by a mobile measuring system. The authors also give the structure and characteristics of the one-step neural network predictor of current, used to predict the current values in the armature and field windings of motor. The analysis of the technical state of the electric drive by a set of attributes is performed in a special analyzer, built on the basis of pre-trained artificial neural network. The results of these studies support the possibility of creating a diagnostic system for the main electric drives of mining shovels using the estimation methods and apparatus of artificial neural networks.
333 _aРежим доступа: по договору с организацией-держателем ресурса
463 _tCoal in the 21st Century: Mining, Processing and Safety
_oThe 8th Russian-Chinese Symposium, Kemerovo, Russia, 10-12 oct., 2016 г.
_fKuzSTU ; ed. A. V. Zykov
_v[P. 274-279]
_o[proceedings]
_d2016
610 1 _aтруды учёных ТПУ
610 1 _aэлектронный ресурс
610 1 _aelectric drive
610 1 _adiagnosis
610 1 _aestimation
610 1 _aэлектроприводы
610 1 _aдвигатели постоянного тока
610 1 _aдиагностика
610 1 _aидентификация
610 1 _aоценка
610 1 _aискусственные нейронные сети
701 1 _aKashirskikh
_bV. G.
_gVeniamin Georgievich
701 1 _aGargaev
_bA. N.
_gAndrey Nikolaevich
701 1 _aZavyalov
_bV. M.
_cspecialist in the field of electrical engineering
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1974-
_gValery Mikhailovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35746
701 1 _aSemykina
_bI. Y.
_gIrina Yurjevna
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bЭнергетический институт (ЭНИН)
_bКафедра электропривода и электрооборудования (ЭПЭО)
_h178
_2stltpush
_3(RuTPU)RU\TPU\col\18674
801 2 _aRU
_b63413507
_c20210212
_gRCR
856 4 _uhttp://elibrary.ru/item.asp?id=26773114
942 _cCF