000 04583nla2a2200469 4500
001 652652
005 20231030041148.0
035 _a(RuTPU)RU\TPU\network\17990
035 _aRU\TPU\network\17979
090 _a652652
100 _a20170123a2016 k y0engy50 ba
101 0 _aeng
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aBioresorbable Ca-Phosphate-Polymer/Metal and Fe-Ag Nanocomposites for Macro-Porous Scaffolds with Tunable Degradation and Drug Release
_fI. Gotman [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 44 tit.]
330 _aBioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their “mission” is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material.
330 _aIn present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering-high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in physiological media and high permeability falling in the range of trabecular bone. The proposed lowtemperature processing approach allows for incorporation of drugs into the residual nanopores without damaging the biomolecule activity.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 0 _0(RuTPU)RU\TPU\network\4816
_tAIP Conference Proceedings
463 0 _0(RuTPU)RU\TPU\network\17851
_tVol. 1783 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016
_oProceedings of the International conference, 19–23 September 2016, Tomsk, Russia
_fNational Research Tomsk Polytechnic University (TPU); eds. V. E. Panin ; S. G. Psakhie ; V. M. Fomin
_v[020062, 9 p.]
_d2016
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aнанокомпозиты
610 1 _aимплантанты
610 1 _aполимеры
610 1 _aкерамика
610 1 _aкостные ткани
610 1 _aрегенерация
610 1 _aмеханическая прочность
701 1 _aGotman
_bI.
_cSpecialist in the field of material science
_cLeading researcher of Tomsk Polytechnic University
_f1957-
_gIrina
_2stltpush
_3(RuTPU)RU\TPU\pers\37811
701 1 _aSwain
_bS. K.
701 1 _aSharipova
_bA.
701 1 _aGutmanas
_bE. Y.
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут физики высоких технологий (ИФВТ)
_bКафедра физики высоких технологий в машиностроении (ФВТМ)
_h2087
_2stltpush
_3(RuTPU)RU\TPU\col\18687
801 2 _aRU
_b63413507
_c20170123
_gRCR
856 4 _uhttp://dx.doi.org/10.1063/1.4966355
942 _cCF