000 | 03509nla2a2200481 4500 | ||
---|---|---|---|
001 | 652958 | ||
005 | 20231030041202.0 | ||
035 | _a(RuTPU)RU\TPU\network\18329 | ||
035 | _aRU\TPU\network\18321 | ||
090 | _a652958 | ||
100 | _a20170201a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCoal char oxidation kinetics in air medium _fA. G. Korotkikh, K. V. Slusarskiy (Slyusarsky), I. V. Sorokin |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 7 tit.] | ||
330 | _aStudy of oxidation kinetics for three types of coal char with different carbon content in air is presented. The coal char powders of anthracite, bituminous T-grade coal and 2B-grade lignite with particle size less than 80 [mu]m were tested. The coal char oxidation was researched by isothermal method via simultaneous TG-DSC analyzer Netzsch STA 449 Jupiter F3 in the temperature range of 1000-1200 °C. Measurements were carried out at ambient pressure. Volumetric flow rate of oxidizing medium into analyser chamber was 250 ml/min. Flow consisted of air and argon with volumetric ratio 24/1. Carbon average rate of oxidation reaction at each temperature were defined based on experimental results. Kinetic constants (the frequency factor and activation energy) were defined for Arrhenius equation modified with three submodels: volumetric model, shrinking core model and random pore model. The activation energy values for anthracite are 1,6-1,7 times higher than for chars of bituminous coal and lignite. | ||
461 | 0 |
_0(RuTPU)RU\TPU\network\4526 _tMATEC Web of Conferences |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\18128 _tVol. 92 : Thermophysical Basis of Energy Technologies (TBET-2016) _oProceedings of the Conference, October 26-28, 2016, Tomsk, Russia _fNational Research Tomsk Polytechnic University (TPU) ; eds. G. V. Kuznetsov ; P. A. Strizhak ; A. O. Zhdanova _v[01020, 5 p.] _d2017 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aкинетика окисления | |
610 | 1 | _aугли | |
610 | 1 | _aвоздушные среды | |
610 | 1 | _aполукоксы | |
610 | 1 | _aанализаторы | |
610 | 1 | _aтепловые электростанции | |
610 | 1 | _aтвердые топлива | |
610 | 1 | _aутилизация | |
610 | 1 | _aдымовые газы | |
610 | 1 | _aгазификация | |
700 | 1 |
_aKorotkikh _bA. G. _cspecialist in the field of power engineering _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1976- _gAleksandr Gennadievich _2stltpush _3(RuTPU)RU\TPU\pers\34763 |
|
701 | 1 |
_aSlusarskiy (Slyusarsky) _bK. V. _cspecialist in the field of power engineering _cassistant of Tomsk Polytechnic University _f1990- _gKonstantin Vitalievich _2stltpush _3(RuTPU)RU\TPU\pers\35634 |
|
701 | 1 |
_aSorokin _bI. V. _gIvan |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЭнергетический институт (ЭНИН) _bКафедра атомных и тепловых электростанций (АТЭС) _h118 _2stltpush _3(RuTPU)RU\TPU\col\18683 |
801 | 2 |
_aRU _b63413507 _c20170213 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1051/matecconf/20179201020 | |
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/36725 | |
942 | _cCF |