000 | 04149nlm1a2200457 4500 | ||
---|---|---|---|
001 | 653095 | ||
005 | 20231030041207.0 | ||
035 | _a(RuTPU)RU\TPU\network\18480 | ||
090 | _a653095 | ||
100 | _a20170207a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aFR | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aThe effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension _fA. V. Panin [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 36 tit.] | ||
330 | _aThe deformation behavior of commercially pure titanium specimens subjected to surface hardening by ultrasonic impact treatment followed by uniaxial tension was investigated experimentally and numerically. The microstructure of the ultrasonically treated ~ 100 ?m thick surface layer undergoing uniaxial tension was revealed, using transmission electron microscopy and electron backscatter diffraction. Non-equiaxed 100–200 nm ?-Ti grains composed of 2 nm diameter TiC and Ti2C nanoparticles, ?- and ??-phase crystallites were found in the 10 ?m thick uppermost layer. Fine and coarse ?-Ti grains containing dislocations and twins were observed at depths of 20 and 50 ?m below the specimen surface, respectively. A non-crystallographic deformation (shear banding) mechanism at work in the nanostructured surface layer of the specimens under study was revealed. The evolution of shear bands was studied by the finite difference method, with the fine-grained structure being explicitly accounted for in the calculations. Shear band self-organization was described, using the energy balance approach similar to that based on Griffith's energy balance criterion for brittle fracture. The tensile deformation of the hardened layer lying at a depth of 50 ?m was implemented by the glide of dislocations and growth of deformation twins induced by preliminary ultrasonic impact treatment. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 |
_tMaterials and Design _d1978- |
||
463 |
_tVol. 117 _v[P. 371–381] _d2017 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aтитан | |
610 | 1 | _aультразвуковая обработка | |
610 | 1 | _aградиент | |
610 | 1 | _aмикроструктура | |
701 | 1 |
_aPanin _bA. V. _cphysicist _cProfessor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences _f1971- _gAlexey Viktorovich _2stltpush _3(RuTPU)RU\TPU\pers\34630 |
|
701 | 1 |
_aKazachenok _bM. S. _gMarina Sergeevna |
|
701 | 1 |
_aKozelskaya _bA. I. _cphysicist _cAssistant of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1985- _gAnna Ivanovna _2stltpush _3(RuTPU)RU\TPU\pers\39663 |
|
701 | 1 |
_aBalokhonov _bR. R. _cphysicist _csenior researcher at Tomsk Polytechnic University _f1972- _gRuslan Revovich _2stltpush _3(RuTPU)RU\TPU\pers\34538 |
|
701 | 1 |
_aRomanova _bV. A. _cspecialist in the field of materials science _csenior researcher at Tomsk Polytechnic University _f1971- _gVarvara Aleksandrovna _2stltpush _3(RuTPU)RU\TPU\pers\35065 |
|
701 | 1 |
_aPerevalova _bO. B. _gOlga Borisovna |
|
701 | 1 |
_aPochivalov _bYu. I. _gYury Ivanovich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнститут физики высоких технологий (ИФВТ) _bКафедра физики высоких технологий в машиностроении (ФВТМ) _h2087 _2stltpush _3(RuTPU)RU\TPU\col\18687 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bФизико-технический институт (ФТИ) _bКафедра общей физики (ОФ) _h136 _2stltpush _3(RuTPU)RU\TPU\col\18734 |
801 | 2 |
_aRU _b63413507 _c20171018 _gRCR |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1016/j.matdes.2017.01.006 |
942 | _cCF |