000 04149nlm1a2200457 4500
001 653095
005 20231030041207.0
035 _a(RuTPU)RU\TPU\network\18480
090 _a653095
100 _a20170207a2017 k y0engy50 ba
101 0 _aeng
102 _aFR
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension
_fA. V. Panin [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 36 tit.]
330 _aThe deformation behavior of commercially pure titanium specimens subjected to surface hardening by ultrasonic impact treatment followed by uniaxial tension was investigated experimentally and numerically. The microstructure of the ultrasonically treated ~ 100 ?m thick surface layer undergoing uniaxial tension was revealed, using transmission electron microscopy and electron backscatter diffraction. Non-equiaxed 100–200 nm ?-Ti grains composed of 2 nm diameter TiC and Ti2C nanoparticles, ?- and ??-phase crystallites were found in the 10 ?m thick uppermost layer. Fine and coarse ?-Ti grains containing dislocations and twins were observed at depths of 20 and 50 ?m below the specimen surface, respectively. A non-crystallographic deformation (shear banding) mechanism at work in the nanostructured surface layer of the specimens under study was revealed. The evolution of shear bands was studied by the finite difference method, with the fine-grained structure being explicitly accounted for in the calculations. Shear band self-organization was described, using the energy balance approach similar to that based on Griffith's energy balance criterion for brittle fracture. The tensile deformation of the hardened layer lying at a depth of 50 ?m was implemented by the glide of dislocations and growth of deformation twins induced by preliminary ultrasonic impact treatment.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMaterials and Design
_d1978-
463 _tVol. 117
_v[P. 371–381]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aтитан
610 1 _aультразвуковая обработка
610 1 _aградиент
610 1 _aмикроструктура
701 1 _aPanin
_bA. V.
_cphysicist
_cProfessor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences
_f1971-
_gAlexey Viktorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34630
701 1 _aKazachenok
_bM. S.
_gMarina Sergeevna
701 1 _aKozelskaya
_bA. I.
_cphysicist
_cAssistant of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1985-
_gAnna Ivanovna
_2stltpush
_3(RuTPU)RU\TPU\pers\39663
701 1 _aBalokhonov
_bR. R.
_cphysicist
_csenior researcher at Tomsk Polytechnic University
_f1972-
_gRuslan Revovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34538
701 1 _aRomanova
_bV. A.
_cspecialist in the field of materials science
_csenior researcher at Tomsk Polytechnic University
_f1971-
_gVarvara Aleksandrovna
_2stltpush
_3(RuTPU)RU\TPU\pers\35065
701 1 _aPerevalova
_bO. B.
_gOlga Borisovna
701 1 _aPochivalov
_bYu. I.
_gYury Ivanovich
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут физики высоких технологий (ИФВТ)
_bКафедра физики высоких технологий в машиностроении (ФВТМ)
_h2087
_2stltpush
_3(RuTPU)RU\TPU\col\18687
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bФизико-технический институт (ФТИ)
_bКафедра общей физики (ОФ)
_h136
_2stltpush
_3(RuTPU)RU\TPU\col\18734
801 2 _aRU
_b63413507
_c20171018
_gRCR
856 4 0 _uhttp://dx.doi.org/10.1016/j.matdes.2017.01.006
942 _cCF