000 03855nlm1a2200469 4500
001 653264
005 20231030041214.0
035 _a(RuTPU)RU\TPU\network\18674
035 _aRU\TPU\network\16190
090 _a653264
100 _a20170220a2017 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrnn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe temperature jump at water - air interface during evaporation
_fE. Y. Gatapova [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 811-812 (60 tit.)]
330 _aThe temperature profiles are measured across a liquid-gas two-layers system at normal atmospheric conditions. A thin water layer is locally heated from the bottom substrate and it evaporates from the liquid-gas interface. A micro-thermocouple with sensor thickness of less than 4 lm has been specially manufactured for the accurate measurement of the temperature profiles. This micro-thermocouple is displaced with micro-steps near the interface, providing the detailed information on the temperature field. A temperature jump at the liquid-gas interface is clearly detected even for small evaporation rate. This jump is measured for heater temperature varying in the range 25-60 C at normal atmospheric conditions. The temperature jump value is found to increase with increasing the temperature difference between heater and ambient gas, and, hence, with increasing of the evaporation rate. A specific evolution of the temperature profile with increasing of the heater temperature is obtained. Depending on the ambient condition, the temperature in the gas phase near the liquid-gas interface can be higher or lower than that of the liquid. The temperature profiles with negligible temperature jump at liquid-gas interface are observed for some operating conditions. The temperature jump depends not only on evaporation rate, but also on temperature gradients in liquid and gas phases near the interface. The experimental results are found to be qualitatively in agreement with the kinetic theory and quantitatively with classical energy balance on the interface. The reported detailed data on the phase transition phenomena for relatively high heat flux are presented for the first time in the literature. However, more precise measurements of the temperature profiles at the liquid-gas interface should be done further.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tInternational Journal of Heat and Mass Transfer
463 _tVol. 104
_v[P. 800–812]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _atemperature
610 1 _aevaporation
610 1 _aheat transfer
610 1 _aинтерфейсы
610 1 _aвыпаривание
701 1 _aGatapova
_bE. Y.
_gElizaveta Yakovlevna
701 1 _aGraur
_bI. A.
701 1 _aKabov
_bO. A.
_cspecialist in the field of thermal engineering
_cProfessor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences
_f1956-
_gOleg Aleksandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35151
701 1 _aAniskin
_bV. M.
_gVladimir Mikhaylovich
701 1 _aFilipenko
_bM. A.
_gMaxim
701 1 _aSharypov
_bF.
701 1 _aTadrist
_bL.
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bЭнергетический институт (ЭНИН)
_bКафедра теоретической и промышленной теплотехники (ТПТ)
_h117
_2stltpush
_3(RuTPU)RU\TPU\col\18679
801 2 _aRU
_b63413507
_c20170227
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.08.111
942 _cCF