000 | 03041nlm1a2200433 4500 | ||
---|---|---|---|
001 | 653640 | ||
005 | 20231030041227.0 | ||
035 | _a(RuTPU)RU\TPU\network\19134 | ||
035 | _aRU\TPU\network\8145 | ||
090 | _a653640 | ||
100 | _a20170321d2016 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aPK | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aNon-linear dynamics of flexible curvilinear bernoulli-euler nano-beams in a stationary temperature field _fJ. Awrejcewicz [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: р. 2083-2084 (28 tit.)] | ||
330 | _aIn this study the mathematical model of non-linear dynamics of flexible curvilinear beams in a stationary temperature field is proposed. On a basis of the variation principles the PDEs governing nonlinear dynamics of curvilinear nano-beams are derived. The proposed mathematical model does not include any requirements for the temperature distribution along the beam thickness and it is defined via solution to the 2D Laplace equation for the corresponding boundary conditions. The governing PDEs are reduced to ODEs employing the finite difference method of a second order and then the counterpart Cauchy problem has been solved using the 4th order Runge-Kutta method. The convergence of reduction from PDEs to ODEs is validated by the Runge principle. In particular, it has been shown that the solutions obtained taking into account the material nano-structural features are more stable in comparison to the case where the micro-effects are neglected. © Medwell Journals, 2016. | ||
461 |
_tARPN Journal of Engineering and Applied Sciences _d2006- |
||
463 |
_tVol. 11, № 9 _v[P. 2079-2084] _d2016 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aнелинейная динамика | |
610 | 1 | _aматематические модели | |
610 | 1 | _aпучки | |
610 | 1 | _aнаноматериалы | |
610 | 1 | _aнелинейная динамика | |
701 | 1 |
_aAwrejcewicz _bJ. _gJan |
|
701 | 1 |
_aKutepov _bI. E. _gIgor |
|
701 | 1 |
_aPavlov _bS. P. |
|
701 | 1 |
_aPapkova _bI. V. _gIrina |
|
701 | 1 |
_aKrysko _bA. V. _cspecialist in the field of Informatics and computer engineering _cprogrammer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences _f1967- _gAnton Vadimovich _2stltpush _3(RuTPU)RU\TPU\pers\36883 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнститут кибернетики (ИК) _bКафедра инженерной графики и промышленного дизайна (ИГПД) _bНаучно-учебная лаборатория 3D моделирования (НУЛ 3DМ) _h6704 _2stltpush _3(RuTPU)RU\TPU\col\20373 |
801 | 2 |
_aRU _b63413507 _c20171211 _gRCR |
|
856 | 4 | _uhttp://docsdrive.com/pdfs/medwelljournals/jeasci/2016/2079-2084.pdf | |
942 | _cCF |