000 | 03543nlm1a2200409 4500 | ||
---|---|---|---|
001 | 653922 | ||
005 | 20231030041238.0 | ||
035 | _a(RuTPU)RU\TPU\network\19437 | ||
090 | _a653922 | ||
100 | _a20170404a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCan a Photosensitive Oxide Catalyze Decomposition of Energetic Materials? _fWang Fenggong [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 1160-1161 (61 tit.)] | ||
330 | _aOrganic–inorganic interfaces provide both intrigues and opportunities for designing systems that possess properties and functionalities inaccessible by each individual component. In particular, the electronic, catalytic, and defect properties of inorganic surfaces can significantly affect the adsorption, decomposition, and photoresponse of organic molecules. Here, we choose the formulation of TiO2 and trinitrotoluene (TNT), a highly catalytic oxide and a prominent explosive, as a prototypical example to explore the effect of a catalytic oxide additive on the photosensitivity of energetic materials. We show that whether or not a catalytic oxide additive can help molecular decompositions under light illumination depends largely on the band alignment between the oxide surface and the energetic molecule. For the composite of TiO2 and TNT, the lowest unoccupied molecular orbitals (LUMOs) of TNT merge within the conduction band (CB) of TiO2. As such, no optical transition corresponding to available laser energies is observed. However, oxygen vacancy can lead to electron density transfer from the surface to the energetic molecules, causing an enhancement of the bonding between molecules and surface and a reduction of the molecular decomposition activation barriers. Therefore, when other (than optical) forms of energy (shock, heat, etc.) flow into molecules, molecular decompositions may be triggered more easily. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tJournal of Physical Chemistry C | ||
463 |
_tVol. 121, iss. 2 _v[P. 1153–1161] _d2017 |
||
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aоргано-неорганические интерфейсы | |
610 | 1 | _aфоточувствительность | |
610 | 1 | _aэнергетические материалы | |
701 | 0 | _aWang Fenggong | |
701 | 1 |
_aTsyshevsky _bR. V. _gRoman |
|
701 | 1 |
_aZverev _bA. S. _cChemist _cAssistant of Yurga Technological Institute (branch) of Tomsk Polytechnic University _f1987- _gAnton Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\36704 |
|
701 | 1 |
_aMitrofanov _bA. Yu. _cChemist _cAssociate Professor of Yurga Technological Institute (branch) of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1976- _gAnatoliy Yuryevich _2stltpush _3(RuTPU)RU\TPU\pers\36705 |
|
701 | 1 |
_aKuklya _bM. M. _gMayya Mikhaylovna |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЮргинский технологический институт (филиал) (ЮТИ) _bКафедра сварочного производства (КСП) _h355 _2stltpush _3(RuTPU)RU\TPU\col\18891 |
801 | 2 |
_aRU _b63413507 _c20170404 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1021/acs.jpcc.6b10127 | |
942 | _cCF |