000 | 03431nla2a2200577 4500 | ||
---|---|---|---|
001 | 654609 | ||
005 | 20231030041308.0 | ||
035 | _a(RuTPU)RU\TPU\network\20245 | ||
035 | _aRU\TPU\network\20239 | ||
090 | _a654609 | ||
100 | _a20170505a2016 k y0rusy50 ba | ||
101 | 0 | _aeng | |
102 | _aRU | ||
105 | _aa z 101zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aEffect of CO2 temperature and particle size distribution of fuel on the gasification kinetic parameters _fA. G. Korotkikh, K. V. Slusarskiy (Slyusarsky) |
|
203 |
_aText _celectronic |
||
225 | 1 | _aApplied engineering | |
300 | _aTitle screen | ||
320 | _a[References: p. 583 (8 tit.)] | ||
330 | _aThe three coal char samples gasification processes at various temperature in carbon dioxide were studied via thermogravimetry analyzer Netzsch STA 449. Samples of Kuznetskiy deposit anthracite and bituminous coal and Kansko-Achinskiy deposit lignite with different carbon content were used. Experimental results were analyzed via three kinetic models: volumetric, shrinking core and random pore. The particle size distribution function was used as well. The obtained activation energy values are in good agreement with previously published data. The particle size distribution function implementation in reaction rate analysis allowed to increase a correlation coefficient value up to 0,9 for all models. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | 1 |
_0(RuTPU)RU\TPU\network\20157 _t11th International Forum on Strategic Technology (IFOST 2016) _o1-3 June 2016, Novosibirsk, Russiain _oin 2 pt. _o[proceedings] _fNovosibirsk State Technical University _d2016 |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\20159 _tPt. 2 _v[P. 580-583] _d2016 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _agasification | |
610 | 1 | _acoal | |
610 | 1 | _aparticle size | |
610 | 1 | _athermogravimetry | |
610 | 1 | _akinetic model | |
610 | 1 | _aactivation energy | |
610 | 1 | _acarbon dioxide | |
610 | 1 | _atemperature | |
610 | 1 | _aгазификация | |
610 | 1 | _aугли | |
610 | 1 | _aчастицы | |
610 | 1 | _aтермогравиметрия | |
610 | 1 | _aкинетические модели | |
610 | 1 | _aразмеры | |
610 | 1 | _aэнергия активации | |
610 | 1 | _aуглекислый газ | |
610 | 1 | _aтемпература | |
700 | 1 |
_aKorotkikh _bA. G. _cspecialist in the field of power engineering _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1976- _gAleksandr Gennadievich _2stltpush _3(RuTPU)RU\TPU\pers\34763 |
|
701 | 1 |
_aSlusarskiy (Slyusarsky) _bK. V. _cspecialist in the field of power engineering _cassistant of Tomsk Polytechnic University _f1990- _gKonstantin Vitalievich _2stltpush _3(RuTPU)RU\TPU\pers\35634 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЭнергетический институт (ЭНИН) _bКафедра атомных и тепловых электростанций (АТЭС) _h118 _2stltpush _3(RuTPU)RU\TPU\col\18683 |
801 | 2 |
_aRU _b63413507 _c20171018 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1109/IFOST.2016.7884327 | |
942 | _cCF |