000 | 03336nlm1a2200493 4500 | ||
---|---|---|---|
001 | 655364 | ||
005 | 20231030041341.0 | ||
035 | _a(RuTPU)RU\TPU\network\21458 | ||
035 | _aRU\TPU\network\21429 | ||
090 | _a655364 | ||
100 | _a20170831a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aCH | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aPermeation of supercritical CO2 through perfluoroelastomers _fJ. K. Ch. Legro [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 37 tit.] | ||
330 | _aThis study aims to investigate the one-component permeation of carbon dioxide through two commercial perfluoroelastomers, Kalrez 6375 and Kalrez 7090, in long-duration tests (more than 30 days). The permeation rate in the cells filled with supercritical CO2 (SC-CO2) at the initial pressure of about pin = 41 MPa has been analyzed by measuring the pressure decrease over time at the constant temperature of about 334 K. These measurements have revealed two distinct regimes of permeation which are separated by a local maximum at p ∼ 12.5 MPa. In the lower pressure regime, the molar flux of the permeant linearly slows down with the pressure decrease. The high-pressure regime is characterized by a pressure independent molar flux of SC-CO2 through the elastomer. Considering the solution-diffusion model of permeation, we have developed a theoretical model describing the mass transport of CO2 through the elastomer at three different time scales. Its comparison with experimental observations provides insight into the fundamental aspects determining the membrane transport properties (diffusion, sorption, permeability). Application of the results for the plane sheet model to the realistic geometry of the sealing rings is discussed. | ||
461 | _tThe Journal of Supercritical Fluids | ||
463 |
_tVol. 126 _v[13 р.] _d2017 |
||
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aдиоксиды | |
610 | 1 | _aмембраны | |
610 | 1 | _aдиффузия | |
610 | 1 | _aводопроницаемость | |
610 | 1 | _aсорбция | |
610 | 1 | _asupercritical carbon dioxide | |
610 | 1 | _akalrez | |
610 | 1 | _amembrane | |
610 | 1 | _adiffusion | |
610 | 1 | _apermeability | |
610 | 1 | _asorption | |
701 | 1 |
_aLegro _bJ. K. Ch. _cspecialist in the field of power engineering _cProfessor of Tomsk Polytechnic University _f1942- _gZhan Klod Chislan _2stltpush _3(RuTPU)RU\TPU\pers\35493 |
|
701 | 1 |
_aMialdun _bA. _gAliaksandr |
|
701 | 1 |
_aStrizhak _bP. A. _cSpecialist in the field of heat power energy _cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) _f1985- _gPavel Alexandrovich _2stltpush _3(RuTPU)RU\TPU\pers\30871 |
|
701 | 1 |
_aShevtsova _bV. _gValentina |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЭнергетический институт (ЭНИН) _bКафедра автоматизации теплоэнергетических процессов (АТП) _h121 _2stltpush _3(RuTPU)RU\TPU\col\18678 |
801 | 2 |
_aRU _b63413507 _c20170831 _gRCR |
|
856 | 4 | 0 | _uhttps://doi.org/10.1016/j.supflu.2017.02.022 |
942 | _cCF |