000 03763nlm1a2200373 4500
001 655597
005 20231030041352.0
035 _a(RuTPU)RU\TPU\network\21839
090 _a655597
100 _a20170918a2017 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aInvestigation and optimization of the depth of flue gas heat recovery in surface heat exchangers
_fV. V. Bespalov, V. I. Bespalov, D. V. Melnikov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 685 (8 tit.)]
330 _aEconomic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas–air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°?. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°? when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tThermal Engineering
463 _tVol. 64, iss. 9
_v[P. 680-685]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aэнергосберегающие технологии
610 1 _aводяной пар
610 1 _aтеплообменники
700 1 _aBespalov
_bV. V.
_cspecialist in the field of informatics and computer technology
_cSenior Lecturer of Tomsk Polytechnic University
_f1965-
_gViktor Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\33055
701 1 _aBespalov
_bV. I.
_cspecialist in the field of heat and power engineering
_cAssociate Professor of Tomsk Polytechnic University, candidate of technical sciences
_f1941-
_gVladimir Il'ich
_2stltpush
_3(RuTPU)RU\TPU\pers\36598
701 1 _aMelnikov
_bD. V.
_gDenis Vladimirovich
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bЭнергетический институт (ЭНИН)
_bКафедра атомных и тепловых электростанций (АТЭС)
_h118
_2stltpush
_3(RuTPU)RU\TPU\col\18683
801 2 _aRU
_b63413507
_c20170918
_gRCR
856 4 _uhttps://doi.org/10.1134/S0040601517090026
942 _cCF