000 | 03762nlm1a2200457 4500 | ||
---|---|---|---|
001 | 655694 | ||
005 | 20231030041356.0 | ||
035 | _a(RuTPU)RU\TPU\network\21955 | ||
035 | _aRU\TPU\network\8111 | ||
090 | _a655694 | ||
100 | _a20170922a2012 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aDeveloping a method for increasing the service life of a higher paraffin dehydrogenation catalyst, based on the nonstationary kinetic model of a reactor _fE. N. Ivashkina [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[Ref.: p. 119-120 (15 tit.)] | ||
330 | _aThe service life of an industrial catalyst can be prolonged by improving the technological conditions of its operation. This allows us to maximally eliminate the catalyst deactivation factors. A specific feature of the catalytic dehydrogenation of hydrocarbons is its nonstationarity produced by the deactivation of catalysts. The results of modeling the industrial catalytic process of C9-C14 paraffin dehydrogenation-the key stage in the production of linear alkylbenzenes-is discussed in this paper. We consider (1) thermodynamic analysis of reactions by means of quantum chemistry, (2) estimation of the kinetic model's parameters by solving the inverse kinetic problem, (3) selection of an equation that describes the coke deactivation of a catalyst, and (4) development of a method for increasing the service life of a dehydrogenation catalyst using a nonstationary model based on the quantitative consideration of the water added to a reactor within a temperature range of 470-490°C. The higher alkane dehydrogenation flowsheet proposed on the basis of these models allows us to predict the operation of a reactor in different water supply regimes. It is shown that the service life of a catalyst grows by 20-30% on the average, if water is fed by increasing portions. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 |
_tCatalysis in Industry _oScientific Journal |
||
463 |
_tVol. 4, iss. 2 _v[P. 110-120] _d2012 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aресурсоэффективность | |
610 | 1 | _aалканы | |
610 | 1 | _aкатализаторы | |
610 | 1 | _aматематическое моделирование | |
610 | 1 | _aметоды | |
610 | 1 | _aквантовая химия | |
610 | 1 | _aдезактивация | |
701 | 1 |
_aIvashkina _bE. N. _cChemical Engineer _cAssociate Professor of Tomsk Polytechnic University, Candidate of technical science _f1983- _gElena Nikolaevna _2stltpush _3(RuTPU)RU\TPU\pers\31275 |
|
701 | 1 |
_aFrantsina _bE. V. _cChemical Engineer _cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences _f1985- _gEvgeniya Vladimirovna _2stltpush _3(RuTPU)RU\TPU\pers\32193 |
|
701 | 1 |
_aRomanovskiy _bR. V. _cChemical Engineer _cEngineer of Tomsk Polytechnic University _f1987- _gRostislav Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\32191 |
|
701 | 1 |
_aDolganov _bI. M. _cChemical Engineer _cEngineer of Tomsk Polytechnic University _f1987- _gIgor Mikhailovich _2stltpush _3(RuTPU)RU\TPU\pers\32216 |
|
701 | 1 |
_aIvanchina _bE. D. _cchemist _cProfessor of Tomsk Polytechnic University, Doctor of technical sciences _f1951- _gEmilia Dmitrievna _2stltpush _3(RuTPU)RU\TPU\pers\31274 |
|
701 | 1 |
_aKravtsov _bA. V. _cChemical Engineer _cConsulting Professor, Doctor of Technical Sciences (DSc) _f1938-2012 _gAnatoly Vasilyevich _2stltpush _3(RuTPU)RU\TPU\pers\29428 |
|
801 | 2 |
_aRU _b63413507 _c20170922 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.1134/S2070050412020079 | |
942 | _cCF |