000 03762nlm1a2200457 4500
001 655694
005 20231030041356.0
035 _a(RuTPU)RU\TPU\network\21955
035 _aRU\TPU\network\8111
090 _a655694
100 _a20170922a2012 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aDeveloping a method for increasing the service life of a higher paraffin dehydrogenation catalyst, based on the nonstationary kinetic model of a reactor
_fE. N. Ivashkina [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[Ref.: p. 119-120 (15 tit.)]
330 _aThe service life of an industrial catalyst can be prolonged by improving the technological conditions of its operation. This allows us to maximally eliminate the catalyst deactivation factors. A specific feature of the catalytic dehydrogenation of hydrocarbons is its nonstationarity produced by the deactivation of catalysts. The results of modeling the industrial catalytic process of C9-C14 paraffin dehydrogenation-the key stage in the production of linear alkylbenzenes-is discussed in this paper. We consider (1) thermodynamic analysis of reactions by means of quantum chemistry, (2) estimation of the kinetic model's parameters by solving the inverse kinetic problem, (3) selection of an equation that describes the coke deactivation of a catalyst, and (4) development of a method for increasing the service life of a dehydrogenation catalyst using a nonstationary model based on the quantitative consideration of the water added to a reactor within a temperature range of 470-490°C. The higher alkane dehydrogenation flowsheet proposed on the basis of these models allows us to predict the operation of a reactor in different water supply regimes. It is shown that the service life of a catalyst grows by 20-30% on the average, if water is fed by increasing portions.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tCatalysis in Industry
_oScientific Journal
463 _tVol. 4, iss. 2
_v[P. 110-120]
_d2012
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aресурсоэффективность
610 1 _aалканы
610 1 _aкатализаторы
610 1 _aматематическое моделирование
610 1 _aметоды
610 1 _aквантовая химия
610 1 _aдезактивация
701 1 _aIvashkina
_bE. N.
_cChemical Engineer
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical science
_f1983-
_gElena Nikolaevna
_2stltpush
_3(RuTPU)RU\TPU\pers\31275
701 1 _aFrantsina
_bE. V.
_cChemical Engineer
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1985-
_gEvgeniya Vladimirovna
_2stltpush
_3(RuTPU)RU\TPU\pers\32193
701 1 _aRomanovskiy
_bR. V.
_cChemical Engineer
_cEngineer of Tomsk Polytechnic University
_f1987-
_gRostislav Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32191
701 1 _aDolganov
_bI. M.
_cChemical Engineer
_cEngineer of Tomsk Polytechnic University
_f1987-
_gIgor Mikhailovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32216
701 1 _aIvanchina
_bE. D.
_cchemist
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1951-
_gEmilia Dmitrievna
_2stltpush
_3(RuTPU)RU\TPU\pers\31274
701 1 _aKravtsov
_bA. V.
_cChemical Engineer
_cConsulting Professor, Doctor of Technical Sciences (DSc)
_f1938-2012
_gAnatoly Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\29428
801 2 _aRU
_b63413507
_c20170922
_gRCR
856 4 _uhttp://dx.doi.org/10.1134/S2070050412020079
942 _cCF