000 02700nlm1a2200445 4500
001 655722
005 20231030041358.0
035 _a(RuTPU)RU\TPU\network\22002
035 _aRU\TPU\network\21574
090 _a655722
100 _a20170925a2017 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aStability of curvilinear Euler-Bernoulli beams in temperature fields
_fA. V. Krysko [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 214-215 (36 tit.)]
330 _aIn this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tInternational Journal of Non-Linear Mechanics
463 _tVol. 94
_v[P. 207-215]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aэлектронные пучки
610 1 _aтеплопередача
610 1 _aFlexible Euler-Bernoulli beam
610 1 _aHeat transfer
610 1 _aStability
610 1 _aCurvilinear beam
701 1 _aKrysko
_bA. V.
_cspecialist in the field of Informatics and computer engineering
_cprogrammer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences
_f1967-
_gAnton Vadimovich
_2stltpush
_3(RuTPU)RU\TPU\pers\36883
701 1 _aAwrejcewicz
_bJ.
_gJan
701 1 _aKutepov
_bI.
_gIgor
701 1 _aKrysko
_bV. A.
_gVadim
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут кибернетики (ИК)
_bКафедра инженерной графики и промышленного дизайна (ИГПД)
_bНаучно-учебная лаборатория 3D моделирования (НУЛ 3DМ)
_h6704
_2stltpush
_3(RuTPU)RU\TPU\col\20373
801 2 _aRU
_b63413507
_c20170925
_gRCR
856 4 _uhttps://doi.org/10.1016/j.ijnonlinmec.2016.12.004
942 _cCF