000 03629nlm1a2200409 4500
001 655926
005 20231030041406.0
035 _a(RuTPU)RU\TPU\network\22266
090 _a655926
100 _a20171012a2017 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aPolylactic Acid Sealed Polyelectrolyte Multilayer Microchambers for Entrapment of Salts and Small Hydrophilic Molecules Precipitates
_fM. Gai, J. C. Frueh, V. L. Kudryavtseva [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aEfficient depot systems for entrapment and storage of small water-soluble molecules are of high demand for wide variety of applications ranging from implant based drug delivery in medicine and catalysis in chemical processes to anticorrosive systems in industry where surface-mediated active component delivery is required on a time and site specific manner. This work reports the fabrication of individually sealed hollow-structured polyelectrolyte multilayer (PEM) microchamber arrays based on layer-by-layer self-assembly as scaffolds and microcontact printing. These PEM chambers are composed out of biocompatible polyelectrolytes and sealed by a monolayer of hydrophobic biocompatible and biodegradable polylactic acid (PLA). Coating the chambers with hydrophobic PLA allows for entrapment of a microair-bubble in each chamber that seals and hence drastically reduces the PEM permeability. PLA@PEM microchambers are proven to enable prolonged subaqueous storage of small hydrophilic salts and molecules such as crystalline NaCl, doxicycline, and fluorescent dye rhodamine B. The presented microchambers are able to entrap air bubbles and demonstrate a novel strategy for entrapment, storage, and protection of micropackaged water-soluble substances in precipitated form. These chambers allow triggered release as demonstrated by ultrasound responsiveness of the chambers. Low-frequency ultrasound exposure is utilized for microchamber opening and payload release.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tACS Applied Materials & Interfaces
463 _tVol. 9, iss. 19
_v[P. 16536-16545]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aвоздушные пузырьки
610 1 _aконтролируемые атмосферы
610 1 _aгидрофобизация
610 1 _aполиэлектролиты
610 1 _aстимулы
701 1 _aGai
_bM.
_gMeiyu
701 1 _aFrueh
_bJ. С.
_cspecialist in the field of medical technology
_cResearcher of Tomsk Polytechnic University, Ph.D
_f1983-
_gJohannes Christoph
_2stltpush
_3(RuTPU)RU\TPU\pers\47197
701 1 _aKudryavtseva
_bV. L.
_cphysicist
_cEngineer of Tomsk Polytechnic University
_f1993-
_gValeriya Lvovna
_2stltpush
_3(RuTPU)RU\TPU\pers\38564
701 1 _aYashchenok
_bA. M.
_gAlexey
701 1 _aSukhorukov
_bG. B.
_gGleb Borisovich
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bУправление проректора по научной работе и инновациям (НРиИ)
_bЦентр RASA в Томске
_bЛаборатория изучения механизмов нейропротекции (Лаб. ИМН)
_h7608
_2stltpush
_3(RuTPU)RU\TPU\col\21815
801 2 _aRU
_b63413507
_c20220520
_gRCR
856 4 _uhttps://doi.org/10.1021/acsami.7b03451
942 _cCF