000 | 04555nlm0a2200481 4500 | ||
---|---|---|---|
001 | 655951 | ||
005 | 20231030041408.0 | ||
035 | _a(RuTPU)RU\TPU\network\22291 | ||
035 | _aRU\TPU\network\16431 | ||
090 | _a655951 | ||
100 | _a20171013d2016 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGR | ||
105 | _ay z 100zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aNeurodynamic non-invasive fetal electrocardiogram extraction _fD. V. Devyatykh, O. M. Gerget |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 3 tit.] | ||
330 | _aFetal electrocardiography in contrary to adult is not that well represented in publications, yet circulatory system of the fetus is probably the most valuable and crucial biological infrastructure. Fetal heart ratio, form of QRS-wave and dynamics of cardiovascular system activity allow estimating fetus state, maturity, possibilities of heart abnormality occasion. This information can be received with guaranteed accuracy through Doppler-ultrasound procedure, however duration of such kind of monitoring is limited. Fetal electrocardiogram is an obvious source of information about fetal heart activity. However, because of low signal-to-noise ratio and prevailing of maternal component, non-invasive ways of acquiring this signal do not guarantee absolute accuracy. Problems of non-invasive electrocardiography demand complex mathematical approaches because maternal and fetal R-peaks overlap in time and frequency domains and have similar morphological structure of heart waves. In this paper we propose approach for extracting fetal electrocardiography from abdominal signal, which is based on dynamic neural network. The common problem for both dynamic and deep learning is caused by linearity of backpropagation and thus vanishing or exploding of gradients occurs. We proposed resilient propagation through time approach that unites training based on sign of derivative and parallel unfolding. We compared developed algorithm with blind source separation through independent component analysis and noted several important advantages that our model delivers - accuracy does not depend on: length of signal; amount of independent channels. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
463 |
_tInformation, Intelligence, Systems and Applications (IISA) _oInternational Conference, 13-15 July 2016, Chalkidiki, Greece _v[16544037] _oproceedings _d2016 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aresilient propagation | |
610 | 1 | _adynamic neural network | |
610 | 1 | _avanishing gradient | |
610 | 1 | _ablind source separation | |
610 | 1 | _afetal electrocardiogram | |
610 | 1 | _aнейронные сети | |
610 | 1 | _aисчезающие градиенты | |
610 | 1 | _aэмбриональная электрокардиограмма | |
700 | 1 |
_aDevyatykh _bD. V. _cspecialist in the field of informatics and computer technology _cprogrammer of Tomsk Polytechnic University _f1989- _gDmitry Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\37832 |
|
701 | 1 |
_aGerget _bO. M. _cSpecialist in the field of informatics and computer technology _cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences _f1974- _gOlga Mikhailovna _2stltpush _3(RuTPU)RU\TPU\pers\31430 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнститут кибернетики (ИК) _bКафедра прикладной математики (ПМ) _h130 _2stltpush _3(RuTPU)RU\TPU\col\18700 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнститут кибернетики (ИК) _bКафедра программной инженерии (ПИ) _h7751 _2stltpush _3(RuTPU)RU\TPU\col\22918 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнститут неразрушающего контроля (ИНК) _bУчебно-методический отдел (УМО) _h6588 _2stltpush _3(RuTPU)RU\TPU\col\18986 |
801 | 1 |
_aRU _b63413507 _c20141010 |
|
801 | 2 |
_aRU _b63413507 _c20171013 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1109/IISA.2016.7785333 | |
942 | _cCF |