000 04168nlm1a2200517 4500
001 656294
005 20231030041421.0
035 _a(RuTPU)RU\TPU\network\22735
090 _a656294
100 _a20171107a2017 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aComparative study of shock-wave hardening and substructure evolution of 304L and Hadfield steels irradiated with a nanosecond relativistic high-current electron beam
_fS. F. Gnyusov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: р. 243-244 (63 tit.)]
330 _aWe present the results of a comparative study of the shock-wave hardening regularities and mechanisms revealed for bulk (thickness h = 6 and 9.3 mm) targets made of austenitic 304L stainless steel and Hadfield steel. A high-current relativistic electron beam (45 ns, 1.35 MeV, 34 GW/cm2) produced by the SINUS-7 accelerator was used for generation of a shock wave. It is revealed by 2D-computer simulation for type 304 steel that the direct ablation of the target material leads to generation of shock wave with duration of ~0.1 [mu]s and amplitude of ~20 GPa, and the strain rate during its direct propagation and reflection from the free rear surface decreases from ~2 down to ~0.4 [mu]s-1. It is found experimentally that in the absence of a rear spall (h = 9.3 mm) the shock-wave loading of both steels leads to formation of three hardened layers: a front layer with a maximum microhardness at a depth of 0.5-1 mm from the bottom of ablation hole, which is in a reasonable agreement with the predictions of the heat-transfer calculations, as well as intermediate and rear-side layers. In case of 304L stainless steel, the depth distributions of microhardness and fraction of twinned grains are consistent with each other, while in the Hadfield steel, the correlation is within the front and intermediate hardened layers only. It is shown by microstructural characterization and analysis of hardening mechanisms that in the case of 304L stainless steel, both front and rear-side hardening are significantly associated with the formation of new intra-phase boundaries by deformation twinning. In the Hadfield steel, unlike the 304L stainless steel, the unusual rear-side hardening is mainly due to increasing the dislocation density under submicrosecond single cycle of compression followed by tension with peak stress of ~3 GPa.
461 _tJournal of Alloys and Compounds
463 _tVol. 714
_v[P. 232–244]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ashock-wave loading
610 1 _ahigh-current electron beam
610 1 _a304L stainless steel
610 1 _aHadfield steel
610 1 _ashock hardening
610 1 _adeformation twinning
610 1 _aнержавеющие стали
610 1 _aударопрочность
610 1 _aударно-волновое воздействие
610 1 _aсильноточные электронные пучки
610 1 _aсталь Гадфильда
610 1 _aдеформации
701 1 _aGnyusov
_bS. F.
_cspecialist in the field of mechanical engineering
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1960-
_gSergey Fedorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31403
701 1 _aRotshteyn
_bV. P.
_gVladimir Petrovich
701 1 _aMayer
_bA. E.
_gAlexsander Evgenjevich
701 1 _aAstafurova
_bE. G.
_gElena Gennadjevna
701 1 _aRostov
_bV. V.
_gVladislav Vladimirovich
701 1 _aGunin
_bA. V.
_gAleksandr Vladimirovich
701 1 _aMayer
_bG. G.
_gGalina Gennadjevna
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bФизико-технический институт (ФТИ)
_bКафедра экспериментальной физики (ЭФ)
_h7596
_2stltpush
_3(RuTPU)RU\TPU\col\21255
801 2 _aRU
_b63413507
_c20171227
_gRCR
856 4 _uhttps://doi.org/10.1016/j.jallcom.2017.04.219
942 _cCF