000 03300nla2a2200481 4500
001 656312
005 20231030041422.0
035 _a(RuTPU)RU\TPU\network\22753
035 _aRU\TPU\network\22740
090 _a656312
100 _a20171108a2017 k y0engy50 ba
101 0 _aeng
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEvaluation and prediction of solar radiation for energy management based on neural networks
_fO. V. Aldoshina, Dinh Van Tai
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 10 tit.]
330 _aCurrently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 0 _0(RuTPU)RU\TPU\network\3526
_tJournal of Physics: Conference Series
463 0 _0(RuTPU)RU\TPU\network\22639
_tVol. 881 : Innovations in Non-Destructive Testing (SibTest 2017)
_oInternational Conference, 27–30 June 2017, Novosibirsk, Russian Federation
_o[proceedings]
_fNational Research Tomsk Polytechnic University (TPU)
_v[012036, 11 p.]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aпрогнозирование
610 1 _aсолнечная радиация
610 1 _aуправление
610 1 _aэнергия
610 1 _aнейронные сети
610 1 _aвозобновляемые источники энергии
610 1 _aинтеллектуальные сети
610 1 _aметеорологический мониторинг
610 1 _aэнергетические системы
610 1 _aэлектрические нагрузки
700 1 _aAldoshina
_bO. V.
701 0 _aDinh Van Tai
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_c(2009- )
_2stltpush
_3(RuTPU)RU\TPU\col\15902
801 2 _aRU
_b63413507
_c20171109
_gRCR
856 4 _uhttp://dx.doi.org/10.1088/1742-6596/881/1/012036
856 4 _uhttp://earchive.tpu.ru/handle/11683/43867
942 _cCF