000 03988nlm1a2200409 4500
001 656495
005 20231030041430.0
035 _a(RuTPU)RU\TPU\network\22936
090 _a656495
100 _a20171116a2017 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEnhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube
_fNguyen Pham Hai Huy [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 38 tit.]
330 _aThe terahertz (THz, 0.1-10 THz) region has been attracting tremendous research interest owing to its potential in practical applications such as biomedical, material inspection, and nondestructive imaging. Those applications require enhancing the spatial resolution at a specific frequency of interest. A variety of resolution-enhancement techniques have been proposed, such as near-field scanning probes, surface plasmons, and aspheric lenses. Here, we demonstrate for the first time that a mesoscale dielectric cube can be exploited as a novel resolution enhancer by simply placing it at the focused imaging point of a continuous wave THz imaging system. The operating principle of this enhancer is based on the generation-by the dielectric cuboid-of the so-called terajet, a photonic jet in the THz region. A subwavelength hotspot is obtained by placing a Teflon cube, with a 1.46 refractive index, at the imaging point of the imagingsystem, regardless of the numerical aperture (NA). The generated terajet at 125 GHz is experimentally characterized, using our unique THz-wave visualization system. The full width at half maximum (FWHM) of the hotspot obtained by placing the enhancer at the focal point of a mirror with a measured NA of 0.55 is approximately 0.55λ, which is even better than the FWHM obtained by a conventional focusing device with the ideal maximum numerical aperture (NA = 1) in air. Nondestructive subwavelength-resolution imaging demonstrations of a Suica integrated circuit card, which is used as a common fare card for trains in Japan, and an aluminum plate with 0.63λ trenches are presented. The amplitude and phase images obtained with the enhancer at 125 GHz can clearly resolve both the air-trenches on the aluminum plate and the card's inner electronic circuitry, whereas the images obtained without the enhancer are blurred because of insufficient resolution. An increase of the image contrast by a factor of 4.4 was also obtained using the enhancer.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tAPL Photonics
463 _tVol. 2, iss. 5
_v[056106, 9 р.]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aпространственное разрешение
610 1 _aтерагерцовое излучение
610 1 _aдиэлектрические материалы
701 0 _aNguyen Pham Hai Huy
701 1 _aHisatake
_bSh.
_gShintaro
701 1 _aMinin
_bO. V.
_cphysicist
_cprofessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1960-
_gOleg Vladilenovich
_2stltpush
_3(RuTPU)RU\TPU\pers\44941
701 1 _aNagatsuma
_bT.
_gTadao
701 1 _aMinin
_bI. V.
_cphysicist
_cSenior researcherof Tomsk Polytechnic University, Doctor of technical sciences
_f1960-
_gIgor Vladilenovich
_2stltpush
_3(RuTPU)RU\TPU\pers\37571
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут неразрушающего контроля (ИНК)
_bКафедра точного приборостроения (ТПС)
_h63
_2stltpush
_3(RuTPU)RU\TPU\col\18717
801 2 _aRU
_b63413507
_c20191030
_gRCR
856 4 _uhttps://doi.org/10.1063/1.4983114
942 _cCF