000 04200nlm1a2200469 4500
001 656637
005 20231030041437.0
035 _a(RuTPU)RU\TPU\network\23078
090 _a656637
100 _a20171124a2018 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aStructure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition
_fS. Wang [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 39 tit.]
330 _aHighly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV–vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale.It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage.The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tApplied Surface Science
463 _tVol. 428
_v[P. 1070-1078]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aэлектронно-лучевые покрытия
610 1 _aпленки
610 1 _aнаночастицы
610 1 _aнанокомпозитные покрытия
701 1 _aWang
_bS.
_gSurui
701 1 _aRogachev
_bA. A.
_cspecialist in the field of non-destructive testing
_cAssociate Scientist of Tomsk Polytechnic University, doctor of technical sciences
_f1978-
_gAleksandr Aleksandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\39855
701 1 _aYarmolenko
_bM. A.
701 1 _aRogachev
_bA. V.
_cspecialist in the field of non-destructive testing
_cLeading researcher of Tomsk Polytechnic University, doctor of chemical sciences
_f1949-
_gAleksandr Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\39856
701 1 _aXiaohong
_bJ.
_gJiang
701 1 _aGaur
_bM. S.
701 1 _aLuchnikov
_bP. A.
_gPetr Aleksandrovich
701 1 _aGaltseva (Gal’tseva)
_bO. V.
_cspecialist in the field of electrical engineering
_cassociate Professor of Tomsk Polytechnic University, candidate of technical Sciences
_f1979-
_gOlga Valerievna
_2stltpush
_3(RuTPU)RU\TPU\pers\33523
701 1 _aChizhik
_bS. A.
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут неразрушающего контроля (ИНК)
_bКафедра физических методов и приборов контроля качества (ФМПК)
_h68
_2stltpush
_3(RuTPU)RU\TPU\col\18709
801 2 _aRU
_b63413507
_c20171124
_gRCR
856 4 _uhttps://doi.org/10.1016/j.apsusc.2017.09.225
942 _cCF