000 | 03197nlm1a2200445 4500 | ||
---|---|---|---|
001 | 656717 | ||
005 | 20231030041441.0 | ||
035 | _a(RuTPU)RU\TPU\network\23183 | ||
090 | _a656717 | ||
100 | _a20171208a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aFree convection in wavy porous enclosures with non-uniform temperature boundary conditions filled with a nanofluid: Buongiorno’s mathematical model _fM. A. Sheremet, I. Pop |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 1192 - 1193 (22 tit.)] | ||
330 | _aIn the present work, the influence of the amplitude ratio, phase deviation, and undulation number on natural convection in a wavy-walled enclosures differentially heated and filled with a water based nanofluid is studied. The upper and bottom walls are wavy with several undulations. The sinusoidal distribution of temperature is imposed at the vertical walls. The flow, heat, and mass transfer are calculated by solving governing equations for embody the conservation of total mass, momentum, thermal energy, and nanoparticles, taking into account the Darcy-Boussinesq-Buongiorno approximation with second order finite difference method in “stream function-temperature-concentration” formulation. Results are presented in the form of streamlines, isotherm, and isoconcentration contours, and distributions of the average Nusselt number for the different values of the amplitude ratio of the sinusoidal temperature on the right side wall to that on the left side wall (γ = 0-1), phase deviation (φ = 0-π), and undulation number (κ = 1-4). It has been found that variations of the undulation number allow to control the heat and mass transfer rates. Moreover, an increase in the undulation number leads to an extension of the non-homogeneous zones. | ||
461 |
_tThermal Science _d2002- |
||
463 |
_tVol. 21, iss. 3 _v[P. 1183-1193] _d2017 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _afree convection | |
610 | 1 | _awavy-walled cavity | |
610 | 1 | _asinusoidal temperature | |
610 | 1 | _aporous media | |
610 | 1 | _ananofluids | |
610 | 1 | _anumerical method | |
610 | 1 | _aсвободная конвекция | |
610 | 1 | _aпористые среды | |
610 | 1 | _aнаножидкости | |
610 | 1 | _aчисленные методы | |
610 | 1 | _aестественная конвекция | |
700 | 1 |
_aSheremet _bM. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1983- _gMikhail Aleksandrovich _2stltpush _3(RuTPU)RU\TPU\pers\35115 |
|
701 | 1 |
_aPop _bI. _gIoan |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЭнергетический институт (ЭНИН) _bКафедра атомных и тепловых электростанций (АТЭС) _h118 _2stltpush _3(RuTPU)RU\TPU\col\18683 |
801 | 2 |
_aRU _b63413507 _c20171208 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.2298/TSCI140814089S | |
942 | _cCF |