000 03689nlm1a2200409 4500
001 656832
005 20231030041446.0
035 _a(RuTPU)RU\TPU\network\23312
090 _a656832
100 _a20171214a2017 k y0engy50 ba
101 0 _aeng
102 _aCH
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aSintering Behavior and Microstructure of TiC-Me Composite Powder Prepared by SHS
_fE. N. Korosteleva, V. V. Korzhov, M. G. Krinitsyn
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 32 tit.]
330 _aTitanium, its alloys, and refractory compounds are often used in the compositions of surfacing materials. In particular, under the conditions of electron-beam surfacing the use of synthesized composite powder based on titanium carbide with a metal binder (TiC-Me) has a positive effect. These powders have been prepared via the self-propagating high-temperature synthesis (SHS) present in a thermally-inert metal binder. The initial carbide particle distribution changes slightly in the surfacing layer in the high-energy rapid process of electron-beam surfacing. However, these methods also have their limitations. The development of technologies and equipment using low-energy sources is assumed. In this case, the question of the structure formation of composite materials based on titanium carbide remains open, if a low-energy and prolonged impact in additive manufacturing will be used. This work reports the investigation of the sintered powders that were previously synthesized by the layerwise combustion mode of a mixture of titanium, carbon black, and metal binders of various types. The problems of structure formation during vacuum sintering of multi-component powder materials obtained as a result of SHS are considered. The microstructure and dependences of the sintered composites densification on the sintering temperature and the composition of the SH-synthesized powder used are presented. It has been shown that under the conditions of the nonstoichiometric synthesized titanium carbide during subsequently vacuum sintering an additional alloy formation occurs that can lead to a consolidation (shrinkage) or volumetric growth of sintered TiC-Me composite depending on the type of metal matrix used.
461 _tMetals
463 _tVol. 7, iss. 8
_v[290, 10 p.]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aкарбид титана
610 1 _aвысокотемпературный синтез
610 1 _aметаллическое состояние
610 1 _aсвязующее
610 1 _aкомпозиционные порошки
610 1 _aспекание
700 1 _aKorosteleva
_bE. N.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1962-
_gElena Nikolaevna
_2stltpush
_3(RuTPU)RU\TPU\pers\32485
701 1 _aKorzhov
_bV. V.
_gViktoriya Viktorovna
701 1 _aKrinitsyn
_bM. G.
_cspecialist in the field of mechanical engineering
_cengineer of Tomsk Polytechnic University
_f1992-
_gMaksim Germanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\37439
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут физики высоких технологий (ИФВТ)
_bКафедра физики высоких технологий в машиностроении (ФВТМ)
_h2087
_2stltpush
_3(RuTPU)RU\TPU\col\18687
801 2 _aRU
_b63413507
_c20171214
_gRCR
856 4 _uhttp://dx.doi.org/10.3390/met7080290
942 _cCF