000 | 03044nlm1a2200433 4500 | ||
---|---|---|---|
001 | 656833 | ||
005 | 20231030041446.0 | ||
035 | _a(RuTPU)RU\TPU\network\23313 | ||
090 | _a656833 | ||
100 | _a20171214a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aPL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aNanoaluminium: Is There any Relationship betweenParticle Size, Non-isothermal Oxidation Data andBallistics? _fA. A. Gromov, U. Teipel |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 515-519 (60 tit.)] | ||
330 | _aThis article focuses on data analyses and comparisons for aluminium nanopowders (or nanoaluminium, nAl) reactions under slow (0.5-20.0 K/min, using DTA/DSC/TGA) and fast (>10000 K/min, combustion in solid propellant formulations) non-isothermal oxidation. Particle sizes were defined through the BET method. Active Al content was related with the averaged reactivity parameters, taken from published DTA/DSC/TGA data. The specific oxidation onset temperature for nAl was poorly correlated with the BET particle size under the conditions investigated. Furthermore, the BET particle size exhibited no correlation with the observed ballistic response (burning rate) at 3.0 MPa. A logarithmic correlation y = 17.484 ln(x) - 5813, with R² = 0.73, was found between nAl particle size and its aluminium content. A calibration equation for the oxidation onset temperature as a function of nAl particle size was determined as y = −0.0071x2 + 3.3173x + 479.32, with R² = 0.75. Specific features of the nAl (metallic aluminum content in nAl and the oxidation onset temperature) can be predicted based on the measured powder parameters (such as BET particle size). | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tCentral European Journal of Energetic Materials | ||
463 |
_tVol. 14, iss. 3 _v[P. 501–519] _d2017 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _acombustion | |
610 | 1 | _athermal analysis | |
610 | 1 | _aoxidation | |
610 | 1 | _ananoaluminium | |
610 | 1 | _aгорение | |
610 | 1 | _aтермический анализ | |
610 | 1 | _aокисление | |
610 | 1 | _aнаноалюминий | |
700 | 1 |
_aGromov _bA. A. _cChemical Engineer _cProfessor of Tomsk Polytechnic University, Doctor of technical sciences _f1975- _gAleksandr Aleksandrovich _2stltpush _3(RuTPU)RU\TPU\pers\33059 |
|
701 | 1 |
_aTeipel _bU. _gUlrich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЭнергетический институт (ЭНИН) _bКафедра атомных и тепловых электростанций (АТЭС) _h118 _2stltpush _3(RuTPU)RU\TPU\col\18683 |
801 | 2 |
_aRU _b63413507 _c20171214 _gRCR |
|
856 | 4 | _uhttps://dx.doi.org/10.22211/cejem/73825 | |
942 | _cCF |