000 02901nlm1a2200397 4500
001 656879
005 20231030041448.0
035 _a(RuTPU)RU\TPU\network\23359
090 _a656879
100 _a20171218a2017 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aSolutions of the bi-confluent Heun equation in terms of the Hermite functions
_fT. Ishkhanyan, A. Ishkhanyan
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 91 (46 tit.)]
330 _aWe construct an expansion of the solutions of the bi-confluent Heun equation in terms of the Hermite functions. The series is governed by a three-term recurrence relation between successive coefficients of the expansion. We examine the restrictions that are imposed on the involved parameters in order that the series terminates thus resulting in closed-form finite-sum solutions of the bi-confluent Heun equation. A physical application of the closed-form solutions is discussed. We present the five six-parametric potentials for which the general solution of the one-dimensional Schrцdinger equation is written in terms of the bi-confluent Heun functions and further identify a particular conditionally integrable potential for which the involved bi-confluent Heun function admits a four-term finite-sum expansion in terms of the Hermite functions. This is an infinite well defined on a half-axis. We present the explicit solution of the one-dimensional Schrцdinger equation for this potential and discuss the bound states supported by the potential. We derive the exact equation for the energy spectrum and construct an accurate approximation for the bound-state energy levels.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tAnnals of Physics
463 _tVol. 383
_v[P. 79-91]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aBi-confluent Heun equation
610 1 _aSeries expansion
610 1 _aermite function
610 1 _aуравнение Гойна
610 1 _aуравнение Шредингера
700 1 _aIshkhanyan
_bT.
_gTigran
701 1 _aIshkhanyan
_bA.
_cphysicist
_cAssociate Scientist of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1960-
_gArtur
_2stltpush
_3(RuTPU)RU\TPU\pers\36243
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bФизико-технический институт (ФТИ)
_bКафедра общей физики (ОФ)
_h136
_2stltpush
_3(RuTPU)RU\TPU\col\18734
801 2 _aRU
_b63413507
_c20171225
_gRCR
856 4 _uhttps://doi.org/10.1016/j.aop.2017.04.015
942 _cCF