000 04801nla2a2200565 4500
001 657169
005 20231030041500.0
035 _a(RuTPU)RU\TPU\network\23658
035 _aRU\TPU\network\23657
090 _a657169
100 _a20180112a2017 k y0engy50 ba
101 0 _aeng
105 _ay z 100zy
135 _adrgn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aStructure and Phase Transformations in 0.34C-1Cr-1Ni-1Mo-Fe Steel after Electrolytic-Plasma Treatment
_fN. Popova [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 6 tit.]
330 _aThe paper presents the transmission electron microscopy (TEM) investigations of 0.34C-1Cr-1Ni-1Mo-Fe steel after electrolytic-plasma nitriding at a voltage of 550 V during 5 min. TEM investigations of thin foils are carried out on a EM-125 microscope and involve two states of the specimen surface: before nitriding (original state) and after nitriding. It is shown that nitriding considerably modifies the phase composition and a list of phases present in steel specimens. In the original state, the specimen structure represents lamellar perlite, ferritic-carbide mix, and fragmented ferrite. After electrolytic-plasma nitriding, the structure comprises lath martensite, [alpha]-phase lamellae with colonies of thin parallel lamellae of the [gamma]-phase and coarse grains of the [alpha]-phase containing multidirectional [gamma]-phase grains different in shape and size. Layers of residual austenite ([gamma]-phase) are observed on the boundaries of lath martensite, which contain Fe[3]Mo[3]N particles. Within these laths there are particles of alloyed cementite М[3]С and carbonitride Cr[2]C0.61N0.39. The nitride particles Fe[3]Mo[3]N are also observed in all other structural components of nitride steel. It also indicates that electrolytic-plasma nitriding does not change the dislocation structure type but increases the scalar density of dislocations half again. Unlike the original state, the dislocation structure of the three structural types is polarized. The mean value of the excess dislocation density is 2.8×1010 cm{-2} that is less than that of the scalar dislocation density. The amplitude of internal stresses is found to be 335 МPа.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 0 _0(RuTPU)RU\TPU\network\4816
_tAIP Conference Proceedings
463 0 _0(RuTPU)RU\TPU\network\23152
_tVol. 1909 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2017 (AMHS’17)
_oProceedings of the International conference, 9–13 October 2017, Tomsk, Russia
_fNational Research Tomsk Polytechnic University (TPU); eds. V. E. Panin, S. G. Psakhie, V. M. Fomin
_v[020179, 5 p.]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aструктуры
610 1 _aфазовые превращения
610 1 _aплазменная обработка
610 1 _aповерхности
610 1 _aаморфные металлы
610 1 _aдефекты
610 1 _aэлектронная микроскопия
610 1 _aазотирование
610 1 _aдислокации
610 1 _aphase transitions
610 1 _asurface hardening
610 1 _aamorphous metals
610 1 _acrystal defects
610 1 _acarbides
701 1 _aPopova
_bN.
_gNatalya
701 1 _aErygina
_bL.
_gLyudmila
701 1 _aNikonenko
_bE. L.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, candidate of physical and mathematical sciences
_f1962-
_gElena Leonidovna
_2stltpush
_3(RuTPU)RU\TPU\pers\35823
701 1 _aKalashnikov
_bM. P.
_cphysicist
_cEngineer of Tomsk Polytechnic University
_gMark Petrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\33561
701 1 _aSkakov
_bM.
_gMazhin
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут международного образования и языковой коммуникации (ИМОЯК)
_bКафедра междисциплинарная (МД)
_h3526
_2stltpush
_3(RuTPU)RU\TPU\col\19012
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут физики высоких технологий (ИФВТ)
_bКафедра наноматериалов и нанотехнологий (НМНТ)
_h4572
_2stltpush
_3(RuTPU)RU\TPU\col\18685
801 2 _aRU
_b63413507
_c20180115
_gRCR
856 4 _uhttps://doi.org/10.1063/1.5013860
942 _cCF