000 02720nla2a2200481 4500
001 657534
005 20231030041514.0
035 _a(RuTPU)RU\TPU\network\24064
035 _aRU\TPU\network\24062
090 _a657534
100 _a20180213a2017 k y0engy50 ba
101 0 _aeng
102 _aFR
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aQuasianalytical solution of inhomogeneous differential equation with cubic nonlinearity
_fT. Inkhireeva, V. P. Zimin
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 107 (5 tit.)]
330 _aThis paper considers a method for solving Cauchy problem of nonlinear differential equation. Source of solution error and way to reduce it is studied. Solution obtained with suggested method is compared with solution obtained with built-in MATLAB functions.
461 1 _0(RuTPU)RU\TPU\network\18167
_tAdvances in Computer Science Research
463 0 _0(RuTPU)RU\TPU\network\24029
_tVol. 72 : Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017)
_oIV International Scientific Conference, 5-8 December 2017, Tomsk, Russia
_o[proceedings]
_fNational Research Tomsk Polytechnic University (TPU) ; eds. O. G. Berestneva [et al.]
_v[P. 103-107]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _anumerical methods for solving ordinary differential equations
610 1 _anonlinear differential equations
610 1 _aCauchy problem
610 1 _aphase portrait
610 1 _afundamental system of solutions
610 1 _aequilibrium points
610 1 _aчисленные методы
610 1 _aдифференциальные уравнения
610 1 _aзадача Коши
610 1 _aфазовый портрет
610 1 _aфундаментальные решения
700 1 _aInkhireeva
_bT.
_cTatiana
701 1 _aZimin
_bV. P.
_cspecialist in the field of Informatics and computer engineering
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1955-
_gVyacheslav Prokopjevich
_2stltpush
_3(RuTPU)RU\TPU\pers\30922
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20180213
_gRCR
856 4 _uhttp://dx.doi.org/10.2991/itsmssm-17.2017.22
942 _cCF