000 04254nlm0a2200421 4500
001 657631
005 20231030041519.0
035 _a(RuTPU)RU\TPU\network\24216
090 _a657631
100 _a20180228a2017 k y0engy50 ba
101 0 _aeng
102 _aGB
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe stabilization system of primary oscillation for a micromechanical gyroscope
_fP. F. Baranov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 19 tit.]
330 _aThe mode of primary oscillations of a micromechanical gyroscope (MMG) sensor is provided by an electrostatic comb-drive actuator in which the interaction between the micromechanical structures and electronics occurs by means of a single or differential capacitive sensor. Two pairs of capacitive sensors are traditionally used for frequency stabilization of MMG primary oscillations. The first pair of capacitive sensors excites primary oscillations, while the second measures the amplitude of primary oscillations. The stabilization system provides a continuous frequency tuning of primary oscillations that increases the duration of transition processes, the time of operational readiness, and the instability of the output signal from the secondary oscillation channel of the MMGs. This paper presents a new approach to the primary oscillation control system of the two-component MMG. The method of calculating the natural resonant frequency is based on measurements of the total current passing through the comb-driver actuator capacitances, and a lock-in detection is suggested. This paper consists of the results of the numerical analysis, the description of the proposed approach to the frequency control of the primary MMG oscillations, and the Simulink model of the behaviour of the MMG stabilization system, depending on its mechanical-and-physical properties with regard to a 2% shift of the natural resonant frequency. The frequency control of the primary oscillations at 2% frequency detuning is performed within 0.11s.
461 _tMeasurement Science and Technology
463 _tVol. 28, № 6 : New Perspectives in Measurements, Tools and Techniques for systems
_oThe 14th IMEKO TC10 Workshop on Technical Diagnostics, 27-28 June 2016, Milan, Italy
_v[064004, 9 p.]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aтехническая диагностика
610 1 _aдатчики
610 1 _aстабилизаторы
610 1 _aколебания
701 1 _aBaranov
_bP. F.
_cspecialist in the field of control and measurement equipment
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1987-
_gPavel Fedorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34618
701 1 _aNesterenko
_bT. G.
_cspecialist in the field of mechanical engineering
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1946-
_gTamara Georgievna
_2stltpush
_3(RuTPU)RU\TPU\pers\30970
701 1 _aTsimbalist
_bE. I.
_cspecialist in the field of control and measurement equipment
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1938-
_gEdvard Ilyich
_2stltpush
_3(RuTPU)RU\TPU\pers\34617
701 1 _aVtorushin
_bS. E.
_gSergey Evgenjevich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа неразрушающего контроля и безопасности
_bОтделение электронной инженерии
_h7977
_2stltpush
_3(RuTPU)RU\TPU\col\23507
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение автоматизации и робототехники (ОАР)
_h7952
_2stltpush
_3(RuTPU)RU\TPU\col\23553
801 2 _aRU
_b63413507
_c20180228
_gRCR
856 4 _uhttps://doi.org/10.1088/1361-6501/aa66c6
942 _cCF