000 02827nlm2a2200385 4500
001 657793
005 20231030041526.0
035 _a(RuTPU)RU\TPU\network\24554
090 _a657793
100 _a20180321a2017 k y0engy50 ba
101 0 _aeng
102 _aGB
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aDeep Learning for ECG Classification
_fB. I. Pyakullya, N. E. Kazachenko, N. E. Mikhaylovskiy
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 11 tit.]
330 _aThe importance of ECG classification is very high now due to many current medical applications where this problem can be stated. Currently, there are many machine learning (ML) solutions which can be used for analyzing and classifying ECG data. However, the main disadvantages of these ML results is use of heuristic hand-crafted or engineered features with shallow feature learning architectures. The problem relies in the possibility not to find most appropriate features which will give high classification accuracy in this ECG problem. One of the proposing solution is to use deep learning architectures where first layers of convolutional neurons behave as feature extractors and in the end some fully-connected (FCN) layers are used for making final decision about ECG classes. In this work the deep learning architecture with 1D convolutional layers and FCN layers for ECG classification is presented and some classification results are showed.
461 0 _0(RuTPU)RU\TPU\network\3526
_tJournal of Physics: Conference Series
463 _tVol. 913 : BigData Conference (Formerly International Conference on Big Data and Its Applications)
_oInternational Conference, 15 September 2017, Moscow, Russian Federation
_v[012004, 6 p.]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aЭКГ
610 1 _aобучение
610 1 _aклассификации
700 1 _aPyakullya
_bB. I.
_cspecialist in the field of informatics and computer technology
_cdesign engineer of Tomsk Polytechnic University
_f1990-
_gBoris Ivanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34170
701 1 _aKazachenko
_bN. E.
_gNataljya Evgenjevna
701 1 _aMikhaylovskiy
_bN. E.
_gNikolay Ernestovich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение автоматизации и робототехники (ОАР)
_h7952
_2stltpush
_3(RuTPU)RU\TPU\col\23553
801 2 _aRU
_b63413507
_c20180321
_gRCR
856 4 _uhttps://doi.org/10.1088/1742-6596/913/1/012004
942 _cCF