000 | 03690nlm2a2200469 4500 | ||
---|---|---|---|
001 | 657971 | ||
005 | 20231030041533.0 | ||
035 | _a(RuTPU)RU\TPU\network\24932 | ||
035 | _aRU\TPU\network\24815 | ||
090 | _a657971 | ||
100 | _a20180420a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGB | ||
105 | _ay z 100zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aContact interaction of flexible Timoshenko beams with small deflections _fA. V. Krysko [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 11 tit.] | ||
330 | _aIn this work chaotic dynamics contact interaction of two flexible Tymoshenko beams, under the action of a transversal alternating load is investigated. The contact interaction of the beams is taken into account by the Kantor model. The geometric nonlinearity is taken into account by the model of T. von Karman. The system of partial differential equations of the twelfth order reduces to the system of ordinary differential equations by the method of finite differences of the second order. The resulting system by methods of Runge-Kutta type of the second, fourth and eighth orders was solved. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations. Chaotic vibrations of two flexible beams of Timoshenko were investigated and the optimal step values over the spatial coordinate and the time steps for the numerical experiment were found. Convergence for all applicable numerical methods have been achieved and shown that chaotic signals are true. | ||
461 | 0 |
_0(RuTPU)RU\TPU\network\3526 _tJournal of Physics: Conference Series |
|
463 |
_tVol. 944 : Applied Mechanics and System Dynamics _oXI International scientific and technical conference, 14–16 November 2017, Omsk, Russian Federation _v[012187, 7 p.] _d2017 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aпучки | |
610 | 1 | _aконтактное взаимодействие | |
610 | 1 | _aхаос | |
610 | 1 | _aметод конечных разностей | |
610 | 1 | _aметод Рунге-Кутта | |
610 | 1 | _aгеометрическая нелинейность | |
701 | 1 |
_aKrysko _bA. V. _cspecialist in the field of Informatics and computer engineering _cprogrammer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences _f1967- _gAnton Vadimovich _2stltpush _3(RuTPU)RU\TPU\pers\36883 |
|
701 | 1 |
_aSaltykova _bO. A. _cspecialist in the field of engineering graphics and descriptive geometry _cSenior researcher of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1990- _gOlga Aleksandrovna _2stltpush _3(RuTPU)RU\TPU\pers\40719 |
|
701 | 1 |
_aZakharova _bA. A. _cspecialist in the field of informatics and computer technology _cProfessor of Tomsk Polytechnic University, Doctor of technical sciences _f1972- _gAlena Alexandrovna _2stltpush _3(RuTPU)RU\TPU\pers\33631 |
|
701 | 1 |
_aKrysko _bV. A. _gVadim |
|
701 | 1 |
_aPapkova _bI. V. _gIrina |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bОтделение автоматизации и робототехники (ОАР) _h7952 _2stltpush _3(RuTPU)RU\TPU\col\23553 |
801 | 2 |
_aRU _b63413507 _c20200218 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1088/1742-6596/944/1/012087 | |
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/57830 | |
942 | _cCF |