000 04313nla2a2200505 4500
001 658062
005 20231030041536.0
035 _a(RuTPU)RU\TPU\network\25135
035 _aRU\TPU\network\25132
090 _a658062
100 _a20180515a2018 k y0engy50 ba
101 0 _aeng
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe New Algorithms Of Machine Learning For Education People With Special Needs
_fA. V. Khaperskaya, O. G. Berestneva
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 215 (8 tit.)]
330 _aThe paper addresses the problem of adapting people with special needs to their environment. We support the idea that organizing special algorithms will be a solution to this problem. The analysis of people behavior in the actual learning process and their e-learning experience shows their ability to adjust their actions and develop adaptation skills relevant to any environment. Furthermore, we analyze the ways to involve people with special needs into the virtual setting activities, thus enabling them to feel that they are productive employees and members of the society. We present the detailed algorithm of the intellectual research, where each step affects the overall decision-making process. Participants, including those with special needs, can also correct their decisions, which helps them develop their abilities to adapt to their future working environment in a company. The main advantage of arranging such process in the electronic environment is that people with special needs acquire the adaptation, communication and decision-making skills as part of machine learning. The analysis of the subject area was carried out, and the main problems of creating automated systems for searching competency development tasks were considered. Also the methods that are used for reference systems (collaborative filtering), information semantic search, and separation of texts on topics without training are presented.
461 0 _0(RuTPU)RU\TPU\network\11959
_tThe European Proceedings of Social & Behavioural Sciences (EpSBS)
463 0 _0(RuTPU)RU\TPU\network\25098
_tVol. 38 : Lifelong Wellbeing in the World (WELLSO 2017)
_oIV International Scientific Symposium, 11-15 September 2017, Tomsk, Russian Federation
_o[proceedings]
_fNational Research Tomsk Polytechnic University (TPU) ; eds. F. Casati, G. A. Barysheva, W. Krieger
_v[P. 206-215]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asemantic analysis
610 1 _adisable people
610 1 _acompetences
610 1 _alsa-algorithm
610 1 _adata mining
610 1 _amachine learning
610 1 _aсемантический анализ
610 1 _aкомпетенции
610 1 _aинтеллектуальный анализ
610 1 _aмашинное обучение
610 1 _aалгоритмы
610 1 _aэлектронное обучение
700 1 _aKhaperskaya
_bA. V.
_ceconomist
_cSenior Lecturer of Tomsk Polytechnic University
_f1986-
_gAlena Vasilievna
_2stltpush
_3(RuTPU)RU\TPU\pers\33542
701 1 _aBerestneva
_bO. G.
_cspecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1953-
_gOlga Grigorievna
_2stltpush
_3(RuTPU)RU\TPU\pers\30927
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bШкола базовой инженерной подготовки
_bОтделение социально-гуманитарных наук
_h8033
_2stltpush
_3(RuTPU)RU\TPU\col\23512
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20180518
_gRCR
856 4 _uhttp://dx.doi.org/10.15405/epsbs.2018.04.24
856 4 _uhttp://earchive.tpu.ru/handle/11683/47226
942 _cCF