000 | 04313nla2a2200505 4500 | ||
---|---|---|---|
001 | 658062 | ||
005 | 20231030041536.0 | ||
035 | _a(RuTPU)RU\TPU\network\25135 | ||
035 | _aRU\TPU\network\25132 | ||
090 | _a658062 | ||
100 | _a20180515a2018 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aThe New Algorithms Of Machine Learning For Education People With Special Needs _fA. V. Khaperskaya, O. G. Berestneva |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 215 (8 tit.)] | ||
330 | _aThe paper addresses the problem of adapting people with special needs to their environment. We support the idea that organizing special algorithms will be a solution to this problem. The analysis of people behavior in the actual learning process and their e-learning experience shows their ability to adjust their actions and develop adaptation skills relevant to any environment. Furthermore, we analyze the ways to involve people with special needs into the virtual setting activities, thus enabling them to feel that they are productive employees and members of the society. We present the detailed algorithm of the intellectual research, where each step affects the overall decision-making process. Participants, including those with special needs, can also correct their decisions, which helps them develop their abilities to adapt to their future working environment in a company. The main advantage of arranging such process in the electronic environment is that people with special needs acquire the adaptation, communication and decision-making skills as part of machine learning. The analysis of the subject area was carried out, and the main problems of creating automated systems for searching competency development tasks were considered. Also the methods that are used for reference systems (collaborative filtering), information semantic search, and separation of texts on topics without training are presented. | ||
461 | 0 |
_0(RuTPU)RU\TPU\network\11959 _tThe European Proceedings of Social & Behavioural Sciences (EpSBS) |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\25098 _tVol. 38 : Lifelong Wellbeing in the World (WELLSO 2017) _oIV International Scientific Symposium, 11-15 September 2017, Tomsk, Russian Federation _o[proceedings] _fNational Research Tomsk Polytechnic University (TPU) ; eds. F. Casati, G. A. Barysheva, W. Krieger _v[P. 206-215] _d2018 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _asemantic analysis | |
610 | 1 | _adisable people | |
610 | 1 | _acompetences | |
610 | 1 | _alsa-algorithm | |
610 | 1 | _adata mining | |
610 | 1 | _amachine learning | |
610 | 1 | _aсемантический анализ | |
610 | 1 | _aкомпетенции | |
610 | 1 | _aинтеллектуальный анализ | |
610 | 1 | _aмашинное обучение | |
610 | 1 | _aалгоритмы | |
610 | 1 | _aэлектронное обучение | |
700 | 1 |
_aKhaperskaya _bA. V. _ceconomist _cSenior Lecturer of Tomsk Polytechnic University _f1986- _gAlena Vasilievna _2stltpush _3(RuTPU)RU\TPU\pers\33542 |
|
701 | 1 |
_aBerestneva _bO. G. _cspecialist in the field of informatics and computer technology _cProfessor of Tomsk Polytechnic University, Doctor of technical sciences _f1953- _gOlga Grigorievna _2stltpush _3(RuTPU)RU\TPU\pers\30927 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bШкола базовой инженерной подготовки _bОтделение социально-гуманитарных наук _h8033 _2stltpush _3(RuTPU)RU\TPU\col\23512 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bОтделение информационных технологий _h7951 _2stltpush _3(RuTPU)RU\TPU\col\23515 |
801 | 2 |
_aRU _b63413507 _c20180518 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.15405/epsbs.2018.04.24 | |
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/47226 | |
942 | _cCF |