000 03900nlm1a2200421 4500
001 658258
005 20231030041545.0
035 _a(RuTPU)RU\TPU\network\25772
090 _a658258
100 _a20180829a2018 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aInterval data fusion with preference aggregation
_fS. V. Muravyov (Murav’ev), L. I. Khudonogova, E. Y. Emelyanova
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 40 tit.]
330 _aIt is proposed in the paper the interval data fusion procedure intended for determination of an interval to be consistent with maximal number of given initial intervals (not necessary consistent among each other) and to be with maximal likelihood including a value x* that can serve as representative of all the given intervals. An algorithm of the interval fusion with preference aggregation (IF&PA) is proposed and discussed that can be carried out with help of representation of intervals on the real line by weak order relations (or rankings) over a set of discrete values belonging to these intervals. It is possible to determine a consensus ranking for collection of discrete values rankings, corresponding to initial intervals. The highest ranked value, accepted as a result of the fusion, guarantees improved accuracy and robustness of the interval data fusion procedure outputs. It is considered a space of weak orders induced by the intervals, its properties and dimension. A reasonable number choice problem of discrete values, representing the interval data, is investigated. Related to the problem, computing experiment results and recommendations are given. The interval data fusion procedures can be widely applied in interlaboratory comparisons, prediction of fundamental constant values on the base of different measured values, conformity testing, enhancement of multisensor readings accuracy in sensor networks, etc.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMeasurement
463 _tVol. 116
_v[P. 621-630]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aслияния
610 1 _aданные
610 1 _aинтервальные данные
610 1 _aранжирование
610 1 _aпрочность
610 1 _aмоделирование
700 1 _aMuravyov (Murav’ev)
_bS. V.
_cspecialist in the field of control and measurement equipment
_cProfessor of Tomsk Polytechnic University,Doctor of technical sciences
_f1954-
_gSergey Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31262
701 1 _aKhudonogova
_bL. I.
_cspecialist in the field of informatics and computer technology
_cEngineer of Tomsk Polytechnic University
_f1989-
_gLudmila Igorevna
_2stltpush
_3(RuTPU)RU\TPU\pers\32893
701 1 _aEmelyanova
_bE. Y.
_cspecialist in the field of control and measurement equipment
_cSenior Lecturer of Tomsk Polytechnic University
_f1984-
_gEkaterina Yurevna
_2stltpush
_3(RuTPU)RU\TPU\pers\41538
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут кибернетики (ИК)
_2stltpush
_3(RuTPU)RU\TPU\col\18397
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение автоматизации и робототехники (ОАР)
_h7952
_2stltpush
_3(RuTPU)RU\TPU\col\23553
801 2 _aRU
_b63413507
_c20180829
_gRCR
856 4 _uhttps://doi.org/10.1016/j.measurement.2017.08.045
942 _cCF