000 | 02762nlm0a2200337 4500 | ||
---|---|---|---|
001 | 658571 | ||
005 | 20231030041557.0 | ||
035 | _a(RuTPU)RU\TPU\network\26492 | ||
035 | _aRU\TPU\network\21588 | ||
090 | _a658571 | ||
100 | _a20181023a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrgn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aModification of the iterative method for solvinglinear viscoelasticity boundary value problems and itsimplementation by the finite element method _fA. A. Svetashkov, N. A. Kupriyanov, K. K. Manabaev |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aThe problem of structural design of polymeric and composite viscoelastic materials is currently ofgreat interest. The development of new methods of calculation of the stress–strain state of viscoelastic solidsis also a current mathematical problem, because when solving boundary value problems one needs to considerthe full history of exposure to loads and temperature on the structure. The article seeks to build an iterativealgorithm for calculating the stress–strain state of viscoelastic structures, enabling a complete separation of timeand space variables, thereby making it possible to determine the stresses and displacements at any time withoutregard to the loading history. It presents a modified theoretical basis of the iterative algorithm and providesanalytical solutions of variational problems based on which the measure of the rate of convergence of theiterative process is determined. It also presents the conditions for the separation of space and time variables.The formulation of the iterative algorithm, convergence rate estimates, numerical computation results, andcomparisons with exact solutions are provided in the tension plate problem example | ||
461 |
_tActa Mechanica _oScientific Journal |
||
463 |
_tVol. 229, Iss. 6 _v[P. 2539-2559] _d2017 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aмодификация | |
700 | 1 |
_aSvetashkov _bA. A. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1943- _gAleksandr Andreevich _2stltpush _3(RuTPU)RU\TPU\pers\36303 |
|
701 | 1 |
_aKupriyanov _bN. A. _cspecialist in the field of materials science _cAssociate Professor of Tomsk Polytechnic University, candidate of technical sciences _f1951- _gNikolay Amvrosievich _2stltpush _3(RuTPU)RU\TPU\pers\36302 |
|
701 | 1 |
_aManabaev _bK. K. _cphysicist _cassistant of Tomsk Polytechnic University _f1985- _gKairat Kamitovich _2stltpush _3(RuTPU)RU\TPU\pers\36301 _4070 |
|
801 | 2 |
_aRU _b63413507 _c20181023 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1007/s00707-018-2129-z | |
942 | _cCF |