000 | 04275nla2a2200493 4500 | ||
---|---|---|---|
001 | 658803 | ||
005 | 20231030041608.0 | ||
035 | _a(RuTPU)RU\TPU\network\26872 | ||
035 | _aRU\TPU\network\26867 | ||
090 | _a658803 | ||
100 | _a20181121a2018 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrgn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSurface Geometry Model of the Capillary when Filling it with Liquid _fA. N. Kalinichenko [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aNondestructive penetrant testing is effective, and in some cases, it is the only possible method of accidents prevention at high-risk sites. But in nowadays liquid-filled discontinuity model has not been adequately studied. Hydrodynamics in the open-end capillaries characterize the flow of liquids using the methods of leak detection. To detect surface discontinuities that are capillary, capillary flaw detection methods are used. Until now, the theoretical relation l=l (t) has not been find out. This relation makes it possible to calculate the absorption kinetics in any capillary at all its stages, which would coincide with experimental data with high accuracy. The studies show that the time of filling the capillaries by liquid is usually higher than the theoretically predicted one. Therefore, revealing the regularities of filling capillaries with liquids to the maximum depth and the duration of filling the capillary with liquid by a given depth is an actual task. The authors suggest a model for determining the velocity of fluid in dead-end and open-end and through capillaries, which take into account the fractal topology of the surface. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | 0 |
_0(RuTPU)RU\TPU\network\11477 _tKey Engineering Materials _oScientific Journal |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\26820 _tVol. 781 : Radiation-Thermal Effects and Processes in Inorganic Materials _oThe XIII International Conference, November 9–14, 2017, Tomsk, Russia _o[proceedings] _fNational Research Tomsk Polytechnic University (TPU) ; ed. S. A. Gyngazov (Ghyngazov) _v[P. 165-169] _d2018 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _acapillary | |
610 | 1 | _afractal | |
610 | 1 | _aliquid | |
610 | 1 | _amodel | |
610 | 1 | _asurface | |
610 | 1 | _aповерхности | |
610 | 1 | _aкапилляры | |
610 | 1 | _aжидкости | |
610 | 1 | _aнеразрушающий контроль | |
610 | 1 | _aгидродинамика | |
701 | 1 |
_aKalinichenko _bA. N. _cspecialist in the field of descriptive geometry _cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences _f1981- _gAleksey Nikolaevich _2stltpush _3(RuTPU)RU\TPU\pers\31018 |
|
701 | 1 |
_aLobanova _bI. S. _cspecialist in the field of non-destructive testing _cEngineer of Tomsk Polytechnic University _f1988- _gIrina Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\36098 |
|
701 | 1 |
_aMeshheryakov _bV. _gVladimir |
|
701 | 1 |
_aSurzhikov _bA. P. _cphysicist _cProfessor of Tomsk Polytechnic University, doctor of physical and mathematical sciences (DSc) _f1951- _gAnatoly Petrovich _2stltpush _3(RuTPU)RU\TPU\pers\30237 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bИнститут неразрушающего контроля (ИНК) _bПроблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводников (ПНИЛ ЭДиП) _h194 _2stltpush _3(RuTPU)RU\TPU\col\19033 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа неразрушающего контроля и безопасности _bОтделение контроля и диагностики _h7978 _2stltpush _3(RuTPU)RU\TPU\col\23584 |
801 | 2 |
_aRU _b63413507 _c20181121 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.4028/www.scientific.net/KEM.781.165 | |
942 | _cCF |