000 | 03814nlm1a2200421 4500 | ||
---|---|---|---|
001 | 658812 | ||
005 | 20231030041608.0 | ||
035 | _a(RuTPU)RU\TPU\network\26897 | ||
090 | _a658812 | ||
100 | _a20181122a2018 k y0rusy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aH2S in Geothermal Power Plants: from Waste to AdditionalResource for Energy and Environment _fA. Bassani [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 132 (19 tit.)] | ||
330 | _aGeothermal energy is a sustainable and clean energy source. Unfortunately, utilization of high-enthalpy geothermal systems is generally associated with emissions of gases like carbon dioxide (CO2), hydrogen sulfide (H2S), hydrogen (H2), nitrogen (N2), methane (CH4), and argon (Ar). The emission of some of these gases, particularly CO2, H2S and H2, is one of the main environmental concerns associated with the use of geothermal energy. The sequestration of these gases and their geological storage is the most diffuse viable option for reducing emissions. However, there is interesting technology, called AG2STM, that allows to convert H2S and CO2 into syngas. In this work, the match of this technology with geothermal power plant is analyzed as a new potential industrial route. The study is based on two different geothermal power plants located in Hellisheiрi and Nesjavellirn (Iceland) that globally emit 61,800 t of CO2 and 28,200 t/y of H2S. The simulations provide some interesting results: (I) the total conversion of H2S that avoids its underground re-injection with the relatedenvironmental problem, (II) the reduction of CO2 emissions (about 8 %) and (III) the increasing of the global thermal energy produced with the same amount initial geothermal energy. The latter is due to the possibility to burn extra hydrogen coming from the AG2STM process. Finally, other advantages of this match are the production of an extra medium pressure steam and the possible reuse of the amount of H2 related to the geothermal plants emissions. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tChemical Engineering Transactions | ||
463 |
_tVol. 70 _v[P. 127-132] _d2018 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aгеотермальная энергия | |
610 | 1 | _aсероводород | |
610 | 1 | _aгеотермальные электростанции | |
701 | 1 |
_aBassani _bA. _gAndrea |
|
701 | 1 |
_aPrevitali _bD. _gDaniele |
|
701 | 1 |
_aPirola _bC. _gCarlo |
|
701 | 1 |
_aBozzano _bG. _gGiulia |
|
701 | 1 |
_aNadezhdin _bI. S. _cspecialist in the field of automation equipment and electronics _cengineer-researcher of Tomsk Polytechnic University _f1990- _gIgor Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\34269 |
|
701 | 1 |
_aGoryunov _bA. G. _cSpecialist in the field of automatic control _chead of the Department Tomsk Polytechnic University, doctor of technical Sciences _f1979- _gAleksey Germanovich _2stltpush _3(RuTPU)RU\TPU\pers\32980 |
|
701 | 1 |
_aManenti _bF. _cItalian specialist in the field of automation equipment and electronics _cresearcher of Tomsk Polytechnic University, candidate of chemical sciences _f1977- _gFlavio _2stltpush _3(RuTPU)RU\TPU\pers\37334 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа ядерных технологий _bОтделение ядерно-топливного цикла _h7864 _2stltpush _3(RuTPU)RU\TPU\col\23554 |
801 | 2 |
_aRU _b63413507 _c20181122 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.3303/CET1870022 | |
942 | _cCF |