000 03814nlm1a2200421 4500
001 658812
005 20231030041608.0
035 _a(RuTPU)RU\TPU\network\26897
090 _a658812
100 _a20181122a2018 k y0rusy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aH2S in Geothermal Power Plants: from Waste to AdditionalResource for Energy and Environment
_fA. Bassani [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 132 (19 tit.)]
330 _aGeothermal energy is a sustainable and clean energy source. Unfortunately, utilization of high-enthalpy geothermal systems is generally associated with emissions of gases like carbon dioxide (CO2), hydrogen sulfide (H2S), hydrogen (H2), nitrogen (N2), methane (CH4), and argon (Ar). The emission of some of these gases, particularly CO2, H2S and H2, is one of the main environmental concerns associated with the use of geothermal energy. The sequestration of these gases and their geological storage is the most diffuse viable option for reducing emissions. However, there is interesting technology, called AG2STM, that allows to convert H2S and CO2 into syngas. In this work, the match of this technology with geothermal power plant is analyzed as a new potential industrial route. The study is based on two different geothermal power plants located in Hellisheiрi and Nesjavellirn (Iceland) that globally emit 61,800 t of CO2 and 28,200 t/y of H2S. The simulations provide some interesting results: (I) the total conversion of H2S that avoids its underground re-injection with the relatedenvironmental problem, (II) the reduction of CO2 emissions (about 8 %) and (III) the increasing of the global thermal energy produced with the same amount initial geothermal energy. The latter is due to the possibility to burn extra hydrogen coming from the AG2STM process. Finally, other advantages of this match are the production of an extra medium pressure steam and the possible reuse of the amount of H2 related to the geothermal plants emissions.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tChemical Engineering Transactions
463 _tVol. 70
_v[P. 127-132]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aгеотермальная энергия
610 1 _aсероводород
610 1 _aгеотермальные электростанции
701 1 _aBassani
_bA.
_gAndrea
701 1 _aPrevitali
_bD.
_gDaniele
701 1 _aPirola
_bC.
_gCarlo
701 1 _aBozzano
_bG.
_gGiulia
701 1 _aNadezhdin
_bI. S.
_cspecialist in the field of automation equipment and electronics
_cengineer-researcher of Tomsk Polytechnic University
_f1990-
_gIgor Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\34269
701 1 _aGoryunov
_bA. G.
_cSpecialist in the field of automatic control
_chead of the Department Tomsk Polytechnic University, doctor of technical Sciences
_f1979-
_gAleksey Germanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32980
701 1 _aManenti
_bF.
_cItalian specialist in the field of automation equipment and electronics
_cresearcher of Tomsk Polytechnic University, candidate of chemical sciences
_f1977-
_gFlavio
_2stltpush
_3(RuTPU)RU\TPU\pers\37334
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа ядерных технологий
_bОтделение ядерно-топливного цикла
_h7864
_2stltpush
_3(RuTPU)RU\TPU\col\23554
801 2 _aRU
_b63413507
_c20181122
_gRCR
856 4 _uhttps://doi.org/10.3303/CET1870022
942 _cCF