000 | 03059nlm1a2200421 4500 | ||
---|---|---|---|
001 | 658955 | ||
005 | 20231030041613.0 | ||
035 | _a(RuTPU)RU\TPU\network\27232 | ||
035 | _aRU\TPU\network\27203 | ||
090 | _a658955 | ||
100 | _a20181219a2018 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aFree Convection in an Open Triangular Cavity Filled With a Nanofluid Under the Effects of Brownian Diffusion, Thermophoresis and Local Heater _fN. S. Bondareva [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 35 tit.] | ||
330 | _aNatural convection nanofluid heat transfer enhancement in a partially heated cavity is considered under the effect of an external Lorentz force exerted through interaction of the nanoparticles and the applied constant magnetic field. The aluminum oxide (Al2O3 or alumina) nanofluid is considered to be with variable properties (i.e. thermal conductivity, viscosity and electric conductivity) and the cavity is partially heated from its left top corner. The effect of the inclination angle of the applied magnetic field is studied and analyzed. The Nusselt number is calculated at the heater to probe the heat transfer enhancement. Both effective thermal and electric conductivities have been investigated in their respective theoretical and experimental correlations. Numerical experiments are presented to show the discrepancy in heat transfer with the use of such correlations. A substantial difference in the heat transfer is noticed for the use of different correlations. An adverse effect is identified and analyzed with the increase of Hartmann number, the nanoparticle volume fraction, and the position of the heater within the cavity. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tJurnal of Heat Transfer | ||
463 |
_tVol. 140 _v[042502,12 p.] _d2018 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aконвекция | |
610 | 1 | _aнаножидкости | |
610 | 1 | _aчисленные результаты | |
610 | 1 | _aтеплообмен | |
701 | 1 |
_aBondareva _bN. S. _gNadezhda Sergeevna |
|
701 | 1 |
_aSheremet _bM. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1983- _gMikhail Aleksandrovich _2stltpush _3(RuTPU)RU\TPU\pers\35115 |
|
701 | 1 |
_aOztop _bH. F. |
|
701 | 0 | _aNidal Abu-Hamdeh | |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20181219 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1115/1.4038192 | |
942 | _cCF |