000 | 03908nlm1a2200469 4500 | ||
---|---|---|---|
001 | 659099 | ||
005 | 20231030041617.0 | ||
035 | _a(RuTPU)RU\TPU\network\27475 | ||
090 | _a659099 | ||
100 | _a20190115a2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aThermal stability and oxidation resistance of ZrSiN nanocomposite and ZrN/SiNx multilayered coatings: A comparative study _fI. A. Saladukhin [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 56 tit.] | ||
330 | _aIn the present work we comparatively study the thermal stability and oxidation resistance of ~ 300 nm thick Zr-Si-N coatings with either 2D or 3D interface geometry: 1) Zr-Si-N nanocomposites and 2) ZrN/SiNx nanoscale multilayers. Both types of films were prepared by reactive magnetron sputter-deposition on Si wafers under Ar + N2 plasma discharges. Zr-Si-N films were deposited by co-sputtering from Zr and Si targets at substrate temperature Tdep of 600 °C, with Si content ranging from 0 to 22.1 at.%, while ZrN/SiNx multilayers with ZrN (resp. SiNx) layer thickness varying from 2 to 40 nm (resp. 0.4 to 20 nm) were synthesized by sequential sputtering from elemental Zr and Si3N4 targets at Tdep = 300 °C. According to transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis the microstructure of Zr-Si-N films changes from dual-phase nanocomposite structure, consisting of ZrN nanograins (4–7 nm) surrounded by an amorphous tissue, towards X-ray amorphous with increasing Si content. The multilayered films consist of nanocrystalline (002)-oriented ZrN and amorphous SiNx layers. The structural evolution has been investigated by XRD after vacuum annealing at 1000 °C, while the oxidation resistance under air was studied using in situ XRD in the temperature range from 400 to 950 °C, as well as by scanning electron microscopy (SEM) and wavelength dispersive X-ray spectrometry (WDS) after air annealing procedure. While the reference ZrN film starts to oxidize at Tox. = 550 °C, a much higher oxidation resistance is found for multilayered films, till Tox. = 860–950 °C for ZrN/SiNx coatings with the elementary layer thickness ratio of 5 nm/10 nm, 3 nm/5 nm and 2 nm/5 nm. ZrSiN nanocomposites exhibit an improved oxidation resistance with increasing Si content compared to binary ZrN compound, but their stability is worst comparatively to the multilayers case. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tSurface and Coatings Technology | ||
463 |
_tVol. 332 _v[P. 428-439] _d2017 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _amultilayer | |
610 | 1 | _ananocomposite | |
610 | 1 | _aoxidation | |
610 | 1 | _areactive magnetron sputter-deposition | |
610 | 1 | _ahard coatingsZr-Si-N | |
610 | 1 | _aнанокомпозиты | |
610 | 1 | _aоксидирование | |
610 | 1 | _aмагнетронное напыление | |
610 | 1 | _aтвердые покрытия | |
701 | 1 |
_aSaladukhin _bI. A. _gIgor |
|
701 | 1 |
_aAbadias _bG. _gGregor |
|
701 | 1 |
_aUglov _bS. R. _cphysicist _csenior research fellow at Tomsk Polytechnic University _f1958- _gSergey Romanovich _2stltpush _3(RuTPU)RU\TPU\pers\31533 |
|
701 | 1 |
_aMichel _bA. _gAnny |
|
701 | 1 |
_aJanse Van Vuuren _bА. _gArno |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20190115 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.surfcoat.2017.08.076 | |
942 | _cCF |