000 03908nlm1a2200469 4500
001 659099
005 20231030041617.0
035 _a(RuTPU)RU\TPU\network\27475
090 _a659099
100 _a20190115a2017 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThermal stability and oxidation resistance of ZrSiN nanocomposite and ZrN/SiNx multilayered coatings: A comparative study
_fI. A. Saladukhin [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 56 tit.]
330 _aIn the present work we comparatively study the thermal stability and oxidation resistance of ~ 300 nm thick Zr-Si-N coatings with either 2D or 3D interface geometry: 1) Zr-Si-N nanocomposites and 2) ZrN/SiNx nanoscale multilayers. Both types of films were prepared by reactive magnetron sputter-deposition on Si wafers under Ar + N2 plasma discharges. Zr-Si-N films were deposited by co-sputtering from Zr and Si targets at substrate temperature Tdep of 600 °C, with Si content ranging from 0 to 22.1 at.%, while ZrN/SiNx multilayers with ZrN (resp. SiNx) layer thickness varying from 2 to 40 nm (resp. 0.4 to 20 nm) were synthesized by sequential sputtering from elemental Zr and Si3N4 targets at Tdep = 300 °C. According to transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis the microstructure of Zr-Si-N films changes from dual-phase nanocomposite structure, consisting of ZrN nanograins (4–7 nm) surrounded by an amorphous tissue, towards X-ray amorphous with increasing Si content. The multilayered films consist of nanocrystalline (002)-oriented ZrN and amorphous SiNx layers. The structural evolution has been investigated by XRD after vacuum annealing at 1000 °C, while the oxidation resistance under air was studied using in situ XRD in the temperature range from 400 to 950 °C, as well as by scanning electron microscopy (SEM) and wavelength dispersive X-ray spectrometry (WDS) after air annealing procedure. While the reference ZrN film starts to oxidize at Tox. = 550 °C, a much higher oxidation resistance is found for multilayered films, till Tox. = 860–950 °C for ZrN/SiNx coatings with the elementary layer thickness ratio of 5 nm/10 nm, 3 nm/5 nm and 2 nm/5 nm. ZrSiN nanocomposites exhibit an improved oxidation resistance with increasing Si content compared to binary ZrN compound, but their stability is worst comparatively to the multilayers case.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tSurface and Coatings Technology
463 _tVol. 332
_v[P. 428-439]
_d2017
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _amultilayer
610 1 _ananocomposite
610 1 _aoxidation
610 1 _areactive magnetron sputter-deposition
610 1 _ahard coatingsZr-Si-N
610 1 _aнанокомпозиты
610 1 _aоксидирование
610 1 _aмагнетронное напыление
610 1 _aтвердые покрытия
701 1 _aSaladukhin
_bI. A.
_gIgor
701 1 _aAbadias
_bG.
_gGregor
701 1 _aUglov
_bS. R.
_cphysicist
_csenior research fellow at Tomsk Polytechnic University
_f1958-
_gSergey Romanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31533
701 1 _aMichel
_bA.
_gAnny
701 1 _aJanse Van Vuuren
_bА.
_gArno
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20190115
_gRCR
856 4 _uhttps://doi.org/10.1016/j.surfcoat.2017.08.076
942 _cCF