000 | 03079nla2a2200421 4500 | ||
---|---|---|---|
001 | 659226 | ||
005 | 20231030041622.0 | ||
035 | _a(RuTPU)RU\TPU\network\27694 | ||
035 | _aRU\TPU\network\27692 | ||
090 | _a659226 | ||
100 | _a20190125a2018 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aTwo-Phase Model of the Polycrystalline Aggregate with Account for Grain-Boundary States under Quasi-Static Deformation _fA. A. Reshetnyak, Yu. P. Sharkeev |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 8 tit.] | ||
330 | _aThe recently suggested statistical theory of flow stress, including yield strength, for polycrystalline materials under quasi-static plastic deformation is developed in the framework of a two-phase model. Analytic and graphic forms of the generalized Hall-Petch relations are obtained for samples with BCC ([alpha]-phase Fe), FCC (Cu, Al, Ni) and HCP ([alpha]-Ti, Zr) crystalline lattices at T=300 K with different values of grain-boundary (second) phase. The maximum of yield strength and respective extremal grain size of the samples are shifted by changing of the second phase. Temperature dependence in the range of 100-350 K for yield strength (using the example of Al) revealed its increase for closely packed nanocrystalline samples with the growth of temperature. An enlargement of the second phase in a sample neutralizes this property | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | 0 |
_0(RuTPU)RU\TPU\network\4816 _tAIP Conference Proceedings |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\27575 _tVol. 2051 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2018 (AMHS’18) _oProceedings of the International conference, 1–5 October 2018, Tomsk, Russia _fNational Research Tomsk Polytechnic University (TPU); eds. V. E. Panin, S. G. Psakhie, V. M. Fomin _v[020251, 6 p.] _d2018 |
|
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aдвухфазные модели | |
610 | 1 | _aагрегаты | |
610 | 1 | _aдеформации | |
610 | 1 | _aтекучесть | |
610 | 1 | _aпластические деформации | |
610 | 1 | _aкристаллические решетки | |
700 | 1 |
_aReshetnyak _bA. A. |
|
701 | 1 |
_aSharkeev _bYu. P. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1950- _gYury Petrovich _2stltpush _3(RuTPU)RU\TPU\pers\32228 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20190125 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1063/1.5083494 | |
942 | _cCF |