000 04541nlm1a2200625 4500
001 659580
005 20231030041634.0
035 _a(RuTPU)RU\TPU\network\28195
035 _aRU\TPU\network\24900
090 _a659580
100 _a20190304a2018 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aImpact toughness of nanocomposite materials filled with fullerene c60particles
_fA. V. Buketov [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aThe dynamics of fracture of epoxy composites on various loadings of fullerene C60 particles was investigated. Epoxy diane oligomer ED-20 was employed as the basic bonding agent in composite formation. It is characterized by its ability of providing high adhesion and cohesive strengths, easy processibility, as well as low coating shrinkage on deposition onto long-length surfaces of complex profile parts. Polyethylene polyamine (PEPA) was used for cross-linking of the epoxy composites, which made it possible to carry out the curing process at room temperature. With the use of IR spectral analysis, the nucleation of new links at the polymer–filler interface was determined, which was implied to result from the improved chemical activity of the dispersed particle surface. It is confirmed by the shift of the absorption bands as well as by the increase in the transmission rate intensity, half-width, and in the relative area of absorption bands. The loading of nanoparticles into the epoxy binder at the optimal content of q = 0.025 parts by weight (pts.wt.) allows one to improve the impact toughness by 2.5 times in contrast with the neat epoxy matrix. With the use of an RKP-300 impact pendulum machine for high-rate bending, the characteristic fracture stages of epoxy nanocomposites were revealed in regard to: i) crack initiation, ii) crack growth, and iii) the fracture point. The use of the VUHI-CHARPY data processing software made it possible to determine the components of fracture energy of the corresponding failure stages. The fracture surface of the nanocomposite materials was investigated with the use of optical and scanning electron microscopy (SEM). By the analysis of SEM micrographs of the fracture surface the homogeneous topology at the nanoscale formed through the action of the particles as a stopper system was revealed. The latter provides the retardation of microcrack propagation processes in the material bulk.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tComposites: Mechanics, Computations, Applications: An International Journal
463 _tVol. 9, iss. 2
_v[P. 141-161]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _afullerene C60
610 1 _aepoxy composite
610 1 _aIR-spectral analysis
610 1 _aimpact toughness
610 1 _aoptical microscopy
610 1 _ascanning electron microscopy
610 1 _ascanning electron microscopy
610 1 _afracture
610 1 _acrack propagation
610 1 _acoating
610 1 _adeck machinery
610 1 _avessel shafting
610 1 _aфуллерены
610 1 _aэпоксидные композиты
610 1 _aИК-спектрометрический метод
610 1 _aударная вязкость
610 1 _aоптическая микроскопия
610 1 _aтрещины
610 1 _aпереломы
701 1 _aBuketov
_bA. V.
_gAndrey Viktorovich
701 1 _aSapronov
_bA. A.
_gAleksandr Aleksandrovich
701 1 _aBuketova
_bN. N.
_gNataljya
701 1 _aMykola
_bB.
_gBrailo
701 1 _aMarushchak
_bP. O.
_gPavel Orestovich
701 1 _aPanin
_bS. V.
_cspecialist in the field of material science
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1971-
_gSergey Viktorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32910
701 1 _aAmelin
_bM. Yu.
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа новых производственных технологий
_bОтделение материаловедения
_h7871
_2stltpush
_3(RuTPU)RU\TPU\col\23508
801 2 _aRU
_b63413507
_c20190312
_gRCR
856 4 _uhttps://doi.org/10.1615/CompMechComputApplIntJ.v9.i2.30
942 _cCF