000 | 04067nlm1a2200397 4500 | ||
---|---|---|---|
001 | 659961 | ||
005 | 20231030041648.0 | ||
035 | _a(RuTPU)RU\TPU\network\28805 | ||
090 | _a659961 | ||
100 | _a20190409a2019 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aClassification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study _fK. S. Yankovich, E. P. Yankovich, N. V. Baranovskiy |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 62 tit.] | ||
330 | _aThe vegetation cover of the Earth plays an important role in the life of mankind, whether it is natural forest or agricultural crop. The study of the variability of the vegetation cover, as well as observation of its condition, allows timely actions to make a forecast and monitor and estimate the forest fire condition. The objectives of the research were (i) to process the satellite image of the Gilbirinskiy forestry located in the basin of Lake Baikal; (ii) to select homogeneous areas of forest vegetation on the basis of their spectral characteristics; (iii) to estimate the level of forest fire danger of the area by vegetation types. The paper presents an approach for estimation of forest fire danger depending on vegetation type and radiant heat flux influence using geographic information systems (GIS) and remote sensing data. The Environment for Visualizing Images (ENVI) and the Geographic Resources Analysis Support System (GRASS) software were used to process satellite images. The area’s forest fire danger estimation and visual presentation of the results were carried out in ArcGIS Desktop software. Information on the vegetation was obtained using the analysis of the Landsat 8 Operational Land Imager (OLI) images for a typical forestry of the Lake Baikal natural area. The maps (schemes) of the Gilbirinskiy forestry were also used in the present article. The unsupervised k-means classification was used. Principal component analysis (PCA) was applied to increase the accuracy of decoding. The classification of forest areas according to the level of fire danger caused by the typical ignition source was carried out using the developed method. The final information product was the map displaying vector polygonal feature class, containing the type of vegetation and the level of fire danger for each forest quarter in the attribute table. | ||
461 |
_tMathematical Problems in Engineering _oopen access journal _d1995- |
||
463 |
_tVol. 2019 _v[6296417, 14 p.] _d2019 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aрастительность | |
610 | 1 | _aлесные пожары | |
610 | 1 | _aопасность | |
700 | 1 |
_aYankovich _bK. S. _gKseniya Stanislavovna |
|
701 | 1 |
_aYankovich _bE. P. _cGeologist _cSenior Lecturer of Tomsk Polytechnic University _f1967- _gElena Petrovna _2stltpush _3(RuTPU)RU\TPU\pers\32215 |
|
701 | 1 |
_aBaranovskiy _bN. V. _cspecialist in electrical engineering _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1978- _gNikolay Viktorovich _2stltpush _3(RuTPU)RU\TPU\pers\34172 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа природных ресурсов _bОтделение геологии _h8083 _2stltpush _3(RuTPU)RU\TPU\col\23542 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20200117 _gRCR |
|
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/57334 | |
856 | 4 | _uhttps://doi.org/10.1155/2019/6296417 | |
942 | _cCF |