000 04067nlm1a2200397 4500
001 659961
005 20231030041648.0
035 _a(RuTPU)RU\TPU\network\28805
090 _a659961
100 _a20190409a2019 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aClassification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study
_fK. S. Yankovich, E. P. Yankovich, N. V. Baranovskiy
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 62 tit.]
330 _aThe vegetation cover of the Earth plays an important role in the life of mankind, whether it is natural forest or agricultural crop. The study of the variability of the vegetation cover, as well as observation of its condition, allows timely actions to make a forecast and monitor and estimate the forest fire condition. The objectives of the research were (i) to process the satellite image of the Gilbirinskiy forestry located in the basin of Lake Baikal; (ii) to select homogeneous areas of forest vegetation on the basis of their spectral characteristics; (iii) to estimate the level of forest fire danger of the area by vegetation types. The paper presents an approach for estimation of forest fire danger depending on vegetation type and radiant heat flux influence using geographic information systems (GIS) and remote sensing data. The Environment for Visualizing Images (ENVI) and the Geographic Resources Analysis Support System (GRASS) software were used to process satellite images. The area’s forest fire danger estimation and visual presentation of the results were carried out in ArcGIS Desktop software. Information on the vegetation was obtained using the analysis of the Landsat 8 Operational Land Imager (OLI) images for a typical forestry of the Lake Baikal natural area. The maps (schemes) of the Gilbirinskiy forestry were also used in the present article. The unsupervised k-means classification was used. Principal component analysis (PCA) was applied to increase the accuracy of decoding. The classification of forest areas according to the level of fire danger caused by the typical ignition source was carried out using the developed method. The final information product was the map displaying vector polygonal feature class, containing the type of vegetation and the level of fire danger for each forest quarter in the attribute table.
461 _tMathematical Problems in Engineering
_oopen access journal
_d1995-
463 _tVol. 2019
_v[6296417, 14 p.]
_d2019
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aрастительность
610 1 _aлесные пожары
610 1 _aопасность
700 1 _aYankovich
_bK. S.
_gKseniya Stanislavovna
701 1 _aYankovich
_bE. P.
_cGeologist
_cSenior Lecturer of Tomsk Polytechnic University
_f1967-
_gElena Petrovna
_2stltpush
_3(RuTPU)RU\TPU\pers\32215
701 1 _aBaranovskiy
_bN. V.
_cspecialist in electrical engineering
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1978-
_gNikolay Viktorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34172
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение геологии
_h8083
_2stltpush
_3(RuTPU)RU\TPU\col\23542
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
801 2 _aRU
_b63413507
_c20200117
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/57334
856 4 _uhttps://doi.org/10.1155/2019/6296417
942 _cCF