000 | 03977nlm1a2200445 4500 | ||
---|---|---|---|
001 | 660136 | ||
005 | 20231030041655.0 | ||
035 | _a(RuTPU)RU\TPU\network\29086 | ||
035 | _aRU\TPU\network\28572 | ||
090 | _a660136 | ||
100 | _a20190426a2018 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aParameters of Iron and Aluminum Nano- and Micropowder Activity upon Oxidation in Air under Microwave Irradiation _fA. V. Mostovshchikov [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 21 tit.] | ||
330 | _aIron nanopowders and iron and aluminum micropowders exposed to microwave radiation with a frequency of 9.4 GHz and a power density of 80 W/cm2 at a pulse repetition rate of 400 Hz have been investigated. According to the results of differential thermal analysis, the microwave radiation caused nonmonotonic changes in the thermal properties of the A1 and Fe powders. After irradiation of the iron nanopowder, the temperature of the onset of its oxidation increased from 150.01 to 158.75°C; in the case of the micropowder, the temperature nonmonotonically changed from 150.00 to 275.38°C. The specific heat of oxidation of the Fe nanopowder increased by 17.3% at maximum, while in the Fe micropowder the maximum attained increase was 13%. For the Al micropowder, the maximum increase in the specific heat of oxidation was found to be 59.7%. Microwave irradiation leads to the formation of electron avalanches, which reduce metal ions in their oxides. At the same time, at certain irradiation doses the generated electron flows oxidize the reduced metals, which is reflected in the nonmonotonic variation in the properties of a material. The increase in the specific heat of oxidation is related to the participation of energy-saturated states of the metals in the oxidation processes. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tJournal of Applied Mechanics and Technical Physics | ||
463 |
_tVol. 63, iss. 9 _v[P. 1223-1227] _d2018 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aнанопорошки | |
610 | 1 | _aжелезо | |
610 | 1 | _aалюминий | |
610 | 1 | _aокисление в воздухе | |
610 | 1 | _aмикроволновое облучение | |
701 | 1 |
_aMostovshchikov _bA. V. _cChemist _cEngineer of Tomsk Polytechnic University _f1989- _gAndrey Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\31091 |
|
701 | 1 |
_aIlyin _bA. P. _cchemist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1949- _gAleksandr Petrovich _2stltpush _3(RuTPU)RU\TPU\pers\33060 |
|
701 | 1 |
_aChumerin _bP. Yu. _cphysicist _cSenior researcher of Tomsk Polytechnic University, Doctor of physical and mathematical science _f1958- _gPavel Yurievich _2stltpush _3(RuTPU)RU\TPU\pers\32716 |
|
701 | 1 |
_aYushkov _bY. G. _celectrophysicist _cProfessor of Tomsk Polytechnic University, Doctor of technical sciences _f1937- _gYuri Georgievich _2stltpush _3(RuTPU)RU\TPU\pers\25936 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа ядерных технологий _bНаучно-исследовательская лаборатория СВЧ-технологии _h7869 _2stltpush _3(RuTPU)RU\TPU\col\23457 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bШкола базовой инженерной подготовки _bОтделение естественных наук _h8032 _2stltpush _3(RuTPU)RU\TPU\col\23562 |
801 | 2 |
_aRU _b63413507 _c20190426 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1134/S1063784218080133 | |
942 | _cCF |