000 04339nlm1a2200457 4500
001 660155
005 20231030041655.0
035 _a(RuTPU)RU\TPU\network\29123
035 _aRU\TPU\network\27182
090 _a660155
100 _a20190429a2018 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aLarge-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS
_fB. Schreiber [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aEfficient substrates for surface-enhanced Raman spectroscopy (SERS) are under constant development, since time-consuming and costly fabrication routines are often an issue for high-throughput spectroscopy applications. In this research, we use a two-step fabrication method to produce self-organized parallel-oriented plasmonic gold nanostructures. The fabrication routine is ready for wafer-scale production involving only low-energy ion beam irradiation and metal deposition. The optical spectroscopy features of the resulting structures show a successful bidirectional plasmonic response. The localized surface plasmon resonances (LSPRs) of each direction are independent from each other and can be tuned by the fabrication parameters. This ability to tune the LSPR characteristics allows the development of optimized plasmonic nanostructures to match different laser excitations and optical transitions for any arbitrary analyte. Moreover, in this study, we probe the polarization and wavelength dependence of such bidirectional plasmonic nanostructures by a complementary spectroscopic ellipsometry and Raman spectroscopy analysis. We observe a significant signal amplification by the SERS substrates and determine enhancement factors of over a thousand times. We also perform finite element method-based calculations of the electromagnetic enhancement for the SERS signal provided by the plasmonic nanostructures. The calculations are based on realistic models constructed using the same particle sizes and shapes experimentally determined by scanning electron microscopy. The spatial distribution of electric field enhancement shows some dispersion in the LSPR, which is a direct consequence of the semi-random distribution of hotspots. The signal enhancement is highly efficient, making our SERS substrates attractive candidates for high-throughput chemical sensing applications in which directionality, chemical stability, and large-scale fabrication are essential requirements.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tRSC Advances
463 _tVol. 8, iss. 40
_v[P. 22569-22576]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aнаноструктуры
610 1 _aплазмонные возбуждения
701 1 _aSchreiber
_bB.
_gBenjamin
701 1 _aGkogkou
_bD.
_gDimitra
701 1 _aDedelaite
_bL.
_gLina
701 1 _aKerbusch
_bJ.
_gJochen
701 1 _aHubner
_bR.
_gRene
701 1 _aSheremet
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1988-
_gEvgeniya Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\40027
701 1 _aZahn
_bD. R. T.
_gDietrich
701 1 _aRamanavicius
_bA.
_gArunas
701 1 _aFacsko
_bS.
_gStefan
701 1 _aRodriguez (Rodriges) Contreras
_bR. D.
_cVenezuelan physicist, doctor of science
_cProfessor of Tomsk Polytechnic University
_f1982-
_gRaul David
_2stltpush
_3(RuTPU)RU\TPU\pers\39942
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий (ИШХБМТ)
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20190429
_gRCR
856 4 _uhttp://dx.doi.org/10.1039/C8RA04031A
942 _cCF