000 02470nlm1a2200349 4500
001 660160
005 20231030041656.0
035 _a(RuTPU)RU\TPU\network\29128
090 _a660160
100 _a20190429a2018 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aA variant of Schwarzian mechanics
_fA. V. Galajinsky
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 12 tit.]
330 _aThe Schwarzian derivative is invariant under -transformations and, as thus, any function of it can be used to determine the equation of motion or the Lagrangian density of a higher derivative -invariant 1d mechanics or the Schwarzian mechanics for short. In this note, we consider the simplest variant which results from setting the Schwarzian derivative to be equal to a dimensionful coupling constant. It is shown that the corresponding dynamical system in general undergoes stable evolution but for one fixed point solution which is only locally stable. Conserved charges associated with the -symmetry transformations are constructed and a Hamiltonian formulation reproducing them is proposed. An embedding of the Schwarzian mechanics into a larger dynamical system associated with the geodesics of a Brinkmann-like metric obeying the Einstein equations is constructed.
461 _tNuclear Physics B
463 _tVol. 936
_v[Р. 661-667]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aуравнение движения
610 1 _aпроизводные
610 1 _aпреобразования
700 1 _aGalajinsky
_bA. V.
_cDoctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT)
_cProfessor of the TPU
_f1971-
_gAnton Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\27878
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20200124
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/57549
856 4 _uhttps://doi.org/10.1016/j.nuclphysb.2018.10.004
942 _cCF